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I. SUMMARY

The sixth Atlas Centaur vehicle (AC-6) was successfully launched from the
Eastern Test Range, Complex 36B, on August 11, 1965, at 0931:04.430 EST. A
2084-pound dynamic model of the Surveyor payload was placed in a simulated lunar
transfer trajectory. Vehicle systems operated satisfactorily and all the flight
objectives were accomplished.

Lift-off within 4 seconds of the window opening demonstrated the launch-on-
time capability of the vehicle. ©Small deviations from the desired trajectory
were accurately compensated for by the Centaur guidance system. Injection of
the Surveyor model into a near-perfect lunar transfer trajectory would have re-
sulted in an impact of the moon without a midcourse correction. To hit the pre-
cise target area on the lunar surface, the required correction would have been
4. 25 meters per second, which is well within the spacecraft capability.

Normal thrust and impulse levels were obtained with both the Atlas and
Centaur propulsion systems. However, a sizeable thrust overshoot on startup of
the Centaur engines has not been resolved. A propellant-utilization system used
for the first time on the Centaur, accurately controlled the fuel and oxidant
consumption. The turnaround and retrothrust maneuver were performed without in-
cident. Relatively high longitudinal modal excitations and lateral payload ex-
citations were obtained at lift-off; these high perturbations are believed to be
related to the launcher holddown arms.

Nominal temperatures were recorded for both the external vehicle skin and
the payload compartment; however, abnormally low temperatures were measured in
the forward equipment area, which may have resulted from leakage of cold helium
purge gas. All vehicle electrical systems performed satisfactorily; the only
difficulty with the RF systems was obtained with the C-band transponder. Most
of the vehicle instrumentation yielded valid data.

The AC-6 vehicle was constructed with several new lightweight designs in-
cluding the forward bulkhead, thrust barrel, interstage adapter and tank skin
thickness reduction from 0.016 to 0.014 inch, No deficiencies were observed in
any of these new structural elements.
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II. INTRODUCTION

The AC-6 Atlas-Centaur vehicle, which was successfully launched from ETR
Complex 36B on August 11, 1965 at 0931:04.430 EST, was the sixth in a series of
development flights. (All symbols and abbreviations are defined in appendix A.)
The AC-6 carried a 2084-pound dynamic model of the Surveyor payload that was suc-
cessfully placed in a simulated lunar transfer trajectory. For a direct ascent
and single-burn second stage, the space vehicle demonstrated a capability to
launch on the proper azimuth for various times and days that the Earth and the
moon were in the proper relation to each other. The launch windows for AC-6
were derived from the September-October launch opportunity dates to satisfy the
requirements for the launch-on-time study as well as offering maximum launch
opportunities and assuring a lunar miss. In order to have photographic cover-
age for use in potential failure analysis, the launch windows were biased by
6 hours to permit a daylight launch.

The AC-6 was the first vehicle flown vherein the Atlas sustainer stage op-
eration was nominally terminated by a planned propellant depletion mode. A nor-
mal sustainer engine shutdown procedure consists of a "soft" shutdown phase and
a "hard" shutdown phase.

From 1lift-off until booster engine cutoff, the Atlas is steered by a series
of preprogramed pitch commands. At 8 seconds after booster engine cutoff, the
Centaur guidance is admitted and is active throughout the remainder of the Atlas
and Centaur portions of flight.

The fellowing major changes to Centaur systems were incorporated on AC-6 to
make it essentially an operational configuration:

(l) Nominal tank skin thickness changed from 0.016 to 0.014 inch

(2) Smaller LOs tank to eliminate slosh baffle and maintain vehicle sta-
bility

(3) Revised station 219 tank ring (modified T-shape)
(4) Station 408 ring modified to station 412 and revised (modified T-shape)
(5) Lightweight thrust barrel

(6) Lengthened insulation panels to accommodate longer ILH, tank incurred by
lowering the intermediate bulkhead

(7) Lightweight forward bulkhead

(8) Advanced propellant level indicating system

gy :



(9)
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Separate and independent Range Safety Command battery pack

(10) Lightweight dual range safety command receivers

(11)

(12)

(13)

Electrically functional Surveyor destruct subsystem (with inert pyro-
technics)

Redesigned lightweight interstage adapter

Single 100 ampere-hour battery for both telemetry and missile power

Other Centaur changes that occurred between AC-5 and AC-6 were as follows:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
The

Revised location and alinement of attitude control engines
Uprated hydraulic recirculation system

Interstage-adapter shaped-charge area "finalized"

New Atlas-Centaur separation guides

Redesigned propellant ducts

Minimum IO, ullage standpipe

Redesigned power changeover switch

No separate telemetry changeover switch

Fusing of nonessential systems on main missile battery

flight test control criteria for AC-6 as stated in Section 8.6 of the

Unified Test Plan (ref. 1) were as follows:

Basic Structure:

(1)

(2)

To demonstrate the structural integrity of the Atlas and Centaur ve-
hicles during all powered phases of flight

To demonstrate the structural and thermal integrity of the Centaur
nose-fairing and insulation panels

Separation and Jettison:

(1)

(2)

(3)

To demonstrate the satisfactory operation of the insulation-panel and
nose-fairing-jettison systems

To demonstrate the satisfactory operation of the Atlas-Centaur separa-
tion systenm

To demonstrate the spacecraft separation system

\ -




N

Guidance:

(1) To verify the integrity of the guidance system

(2) To demonstrate the overall measuring accuracy of the guidance system

(3) To verify that the guidance system provides proper discrete and steer-
ing signals to the Atlas and Centaur flight-control systems during
closed-loop flight

(4) To demonstrate that the guidance equations and associated trajectory
parameters are satisfactory

(5) To obtain data on accuracy of Atlas-Centaur lunar orbit injection by
postinjection DSIF tracking of the Surveyor dynamic model S-band
transponder

Centaur Propulsion:

(1) To verify the ability of the Centaur propulsion system to start in the
flight environment and then burn to guidance cutoff

(2) To obtain data on the performance of the Centaur main-engine system
(3) To obtain data on the performance of the Ho0o attitude-control system

Centaur Vehicle Systems:

(1) To verify that the flight-control system supplies the proper signal for
attitude control and dynamic stability of the Centaur vehicle

(2) To obtain data on the capability of Centaur to perform the retromaneu-
ver

(3) To obtain data on the performance of the following systems:
(a) Hydraulic
(b) Pneumatic
(c) Electrical
(d) Radiofrequency: telemetry, Azusa, and C-band beacon
(e) Propellant utilization
(f) Propellant level indicating

(4) To demonstrate the capability of the electromechanical timer for one-
burn missions

SN 5
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Atlas Vehicle:

(1) To obtain data on the performance of all the Atlas systems (including
the propellant-depletion system)

(2) To demonstrate the operation of the 165K-thrust MA-5 engine on the
LV-3C vehicle

Launch Capability:

(1) To demonstrate the simulated lunar - launch-on-time (variable launch
azimuth) capability of the Atlas-Centaur vehicle

Environment:

(1) To obtain data on the flight environment including pressures, tempera-
tures, and vibration levels

(2) To obtain data on the spacecraft environmment during the launch-to-
spacecraft separation phase of flight

(3) To obtain da s, terminal beha:
general postmlssion performance of vehicle systems until 1
data links

on the orbital envirconment

The AC-6 sequence of flight events is presented in table II-I. Table II-II
presents a weight summary for Atlas and Centaur. A schematic diagram of the
flight is shown in figure II-1, and an illustration of the general arrangement
of the Centaur stage is presented in figure II-2. Figure II-3 shows an illus-
tration of the AC-6 dynamic model, SD-2.




TABLE II-I. - SEQUENCE OF FLIGHT EVENTS

Event Time, sec
Programer Nominal Actual
Lock LH2 vent valve T - 7.00 T - 7.38
Programer start; 2-in. rise T+ 0 T+0
Initiate roll program T + 2 T +2.3
Initiate pitch program T + 15 T +15.3
Open LHZ vent valve command T + 69 T + 69.6??
Close IHp vent valve command, BECO + O T+ 142.7 [T + 141.6j?
activate sustainer control, rate
gyro gain to high
Booster engine cutoff BECO + O T + 142.7 |T + 141.79
Jettison booster package BECO + 3.1 T + 145.8 | T + 144.87
Open LH2 vent valve command BECO + 7 T + 149.7 + 149.638
Guidance admitted for steering control| BECO + 8.0 T + 150.7
Jettison insulation panels BECO + 30 T+ 172.7 |T + 171.62
Unlatch nose fairings BECO + 54.5 T + 197.2 |T + 195.57+0.5
Fire thruster bottles BECO + 55 T + 197.7 |T + 196.47
Start Centaur boost pumps BECO + 62 T + 204.7 |T + 203.57+0.5
Sustainer engine cutoff (due to Lo, SECO + O T + 234.8 |T + 234.1?2
depletion) Vernier engine cutoff
Close LOZ and LH2 vent valves, SECO + O T + 234.8 |T + 254.4jg
pressurize LOs, and LHo tanks
Start Centaur programer SECO + O T + 234.8 T + 235.1f€
+
Start hydraulic recirculating pump SECO + 0.5 T + 235.3 |T + 235.6_2
SECO discrete backup command from SECO + O T + 234.8 |T + 236.57
guidance
Separate first and second stases SECO + 1.9 T + 236.7 + 236.22
+0
Prestart, steering reference to SECO + 3.5 T + 238.3 + 238.6_l
Centaur
Start main engines, unnull main engine|SECO + 8.5 T + 243.3 |T + 242.77
integrators, low rate gain, energize (MES)
igniters
Main engine cutoff, H50o separate on, |MECO + O T + 675.4 |T + 679.07
H202 roll integrators unnulled, high
rate gain, low displacement gain
MECO backup, PU null SECO + 453.5 | T + 688.3 |T + 688.6+§
(t) B
+0
Safe Surveyor destruct SECO + 454 T + 688.8 |T + 689.6_l
+0
Preseparation arming, extend landing |t + 18 T + 706.3 |T + 706.8_l
gear, null main-engine integrators

.,
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TABLE II-I. - Concluded.

1%

SEQUENCE OF FLIGHT EVENTS

Event Time, sec
Programer Nominal Actual
Unlock omni antenna t + 28.5 T+ 716.8 |T + 717.1%
High pover on, preseparation arming | t + 49 T + 7573 |T + 736.57 5
off
Spacecraft electrical disconnect, t 4+ 54.5 T + 742.8 |T + 742.57+0.
switch guidance-spacecraft TIM
channels
Separate spacecraft t + 60 T + 748.3 |T 747.57
Start 180° turn, admit guidance for t + 65 T + 753.3 |T 752.97
attitude control
End 180° turn, start retrothrust, t + 185 T + 873.3 |T + 872.57
prestart, start hydraulic recircu-
lating pump
Calibrate telemetry t + 641 T + 1529.3|T + 1329. 777
Open L02 and LH, vent valves t + 1165 T + 1853.3(T 1853.5f$
End retrothrust, power off t + 1166 T + 1854. 3|T 1854.lf2
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TABLE II-II _ EIGHT SUMMARY

Centaur stage

Weig;;—w
1b

Basic hardware

Atlas stage

Weight,
1b

Sustaliner jettison welght

Body group 94¢ gustainer dry weight 5 867
Propulsion group 1 192 sustainer residuals 1 654
Guidance group 310 Unburned expendables 0
Control group 117 Interstage adapter 1 087
Pressurization group 138 Unburned lubrication oil 17
Electrical group 266
Separation equipment 84 Total 8 425
Flight instrumentation 44
Miscellaneous equipment 153 Booster jettison weight
Spacecraft 2 084
Booster dry weight 6 208
Total 5 727 Booster residuals 1117
Unburned lubrication oil 29
Jettisonable hardware
Total 7 354
Nose fairing 2 00§
Insulation panels 1 218 Flight expendables
Total 3 224 Mailn impulse RP-1 75 829
Main impulse Op 171 881
Residuals Hellum panel purge [
Oxidizer vent loss 15
ILHo trapped 72 Lubrication oil 173
LO2 trapped 68
Unburned 2LHp 91 Total 247 904
Unburned aL02 203
Gaseous hydrogen 83 Ground® expendables
Gaseous oxygen 165
HoO2 52 Fuel 536
Helium 5 Oxldizer 1 698
Ice 12 Lubrication oll 3
Exterior ice 50
Total 751 LN2 in helium shrouds 140
Pre-ignition GOo loss 450
Expendables
Total 2 877
Main impulse Hp 4 966
Main impulse Oo 25 153 Total tanked weight 266 560
Gas boilloff on ground bH2 27 Minus ground run -2 877
Gas bolloff on ground POs 26 :
Inflight chill Hp 11 Total Atlas weight 263 683
Inflight chill 05 13 at lift-off
Boost-phase vent Hp 83
Boost-phase vent Oo 20 Total Atlas-Centaur 303 814
Sustalner-phase vent Hp 46 lift-off weight
Sustainer-phase vent 0o 38
Ho0o 49
Ice 50
Total 30 482
Total tanked weight 40 184
Minus ground vent -53
Total Centaur weight 40 131

at 1lift-off

&Includes flight performance reserve.

Expended prior to Atlas ignition.

€Ground run time, 2.05 sec.

bRty
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IIT. PRELAUNCH HISTORY

SUMMARY

Between the time the Atlas-Centaur launch vehicle arrives at ETR and launch
day, it undergoes a series of preflight tests. These tests, which include
(1) the Flight Control and Propellant Tanking Test, (2) the Flight Acceptance
and Composite Test, and (3) the Composite Readiness Test, are to ensure that all
airborne and ground-support systems are within specifications to support a suc-
cessful launch. The tests were satisfactorily completed with only a few major
anomalies.

ARRIVAL, AND ERECTION

The Atlas-Centaur launch vehicle (AC-G) arrival at ETR began with the Atlas
(151D) booster and the interstage adapter on May 14, 1965. The Centaur (2D)
stage arrived May 25, 1965.

Vehicle erection on Complex 36B started on May 18 with the Atlas booster,
followed by the interstage adapter on May 19, and the Centaur stage on May 27.

The Surveyor dynamic model arrived at EIR on May 14. The encapsulation of
the model in preparation for preflight testing was accomplished on July 8 and it
was mated to the launch vehicle on July 9. The encapsulated payload was demated
on July 28 for final flight preparations and was remated to the launch vehicle
on August 1 in preparation for launch.

PROPELLANT TANKING INTEGRATED TEST

The Propellant Tanking Integrated Test (Quad Tanking, ref. 2) is conducted
to verify that the launch vehicle can be tanked with propellants and that all
vehicle systems and the spacecraft can function properly under cryogenic and op-
erational radiofrequency environments.

The Quad Tanking Test was conducted on July 13. The test began at 0520 EST
and proceeded through to the scheduled 40-minute hold at T - 10 minutes at 0750
EST. Prior to T - 10 minutes, two major airborne equipment discrepancies were
encountered. The first discrepancy occurred during the Guidance and Autopilot
Test when the Atlas programer failed to act upon the guidance-generated BECO
command. A rerun of this test was conducted successfully. After the Quad Tank-
ing Test, the programer was removed from the vehicle and sent to GD/C, San
Diego, for failure analysis. The second discrepancy occurred during LH2 tanking
when the C-1 pump inlet temperature would not meet the temperature requirements.
The probable cause of this discrepancy was the hydrogen recirculation line. The
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count was resumed at 0904 EST and, after several recycles between T - 5 minutes
and T - 0, a simulated T - O occurred at 1000 EST. Other than the two major
airborne equipment discrepancies, the results of the test were satisfactory.

PARTTAL: TANKING TEST

A partial tanking test was conducted on July 29. The purpose of the test
was to verify the fix of the hydrogen recirculation line by confirming the pres-
ence of LHy at the C-1 pump inlet. The tanking consisted of 28 percent Centaur
102, 58 percent Centaur ILH2, and no propellants loaded in the Atlas. Liquid
temperatures were not indicated at the pump inlet during LH2 loading, but were

indicated 5% minutes after the start of LHe chilldown of the Centaur main

engines. The test was completed with satisfactory results.

FLIGHT ACCEPTANCE COMPOSITE TEST

The Flight Acceptance Composite Test (FACT, ref. 3) is conducted to verify
that the combined Atlas-Centaur-Surveyor dynamic model system is capable of
operation with no detrimental interference when subjected to conditions simula-
ting flight.

The FACT was conducted on July 28, beginning at 0905 EST. At T - 35 min-
utes a test to ensure that the Atlas inverter could be started and transferred
to internal power was initiated. During the inverter start, trouble with a
ground power supply was experienced and corrected. Subsequently, a second in-
verter start test was successfully performed. The test was resumed and pro-
ceeded normally with T - O occurring at 1226 EST. Other than the power supply
problem, the test was completed with satisfactory results.

A second FACT was conducted on August 5. The purpose of the test was to
check out the new Atlas programer that replaced the one that failed to start
during the CRT test conducted on July 31. Prior to the start of the second
test, the Atlas inverter was replaced because of the problems that were en-
countered during the first FACT. The test was satisfactorily accomplished.

COMPOSITE READINESS TEST

The Composite Readiness Test (CRT; ref. 4) is conducted to revalidate and
verify the proper operation of the vehicle and GSE electrical systems.

The CRT was conducted on July 31. The test began at 1335 EST and pro-
ceeded until T - 5 minutes and 30 seconds at which time Atlas telemetry subsys-
tem 1 was replaced because of a malfunction of two telemetry channels. The
count was resumed and proceeded through to T - O at which time the count was re-
cycled to T - 5 minutes because the second Atlas programer failed to start. The
count was resumed and proceeded to the end of the test with a manual programer
start and T - O occurred at 1559 EST. After the test, the programer was removed
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and sent to GD/C, San Diego, for failure analysis.

A second CRT was conducted on August 6. The test was performed with satis-
factory results.

LAUNCH

The first attempt to launch AC-6 was made on August 10 at ETR Complex 36B.
The launch attempt was aborted at T - 1 minute because the Centaur destruct unit
failed to arm. A recycle was started that enabled the second launch attempt to
be conducted on August 11. The vehicle lifted off from ETR Complex 36B at
0931:04 EST. The vehicle systems performed nominally and injected the Surveyor
dynamic model into a simulated lunar transfer orbit.

WEATHER

The atmospheric conditions on launch day were favorable, and permitted good
photographic coverage. The cloud cover was from 20 percent between 20 000 to
40 000 feet to 80 percent between 250 000 to 300 000 feet. Surface w1nds ranged
from 6 to 8 knots with visibility of 10 miles and a temperature of 84° F. Alti-
tude variation of atmospheric pressure, temperature, and wind velocity component
is presented in figures V-1 and 2.

LAUNCH ON TIME

The AC-6 launch and launch attempt demonstrated two important launch-on-
time factors essential to the development of a capability to adjust to unknown
factors that could cause the miss of a launch window. These factors were
(1) the capability to preplan a countdown operation and execute the countdown
to achieve a precise vehicle 1lift-off time and (2) the gbility to turn around
in 24 hours after an abort of a launch attempt.

The Atlas-Centaur AC-6 was launched on August 11, 1965, at 0931:04 EST,
which was 4 seconds after the window-opening time. The ETR range countdown was
scheduled for 280 minutes with preplanned holds of 60 and 40 minutes at T - 90
and T - 5 minutes, respectively. The countdown was successful thus demonstrat-
ing the ability to,launch on time.

The launch attempt on August 10, 1965, was aborted after the countdown
reached T - 1 minute and 35 seconds because the Centaur Range Safety Command
system failed to arm. The vehicle was detanked, and preparations were made to
attempt a launch on the following day. The second launch attempt was success-
ful thus demonstrating the ablllty to turn a vehicle around and launch within a
24-hour period.

P 2




AC-6 PRELAUNCH HISTORY - 1965

Arrival of Atlas 156D May 14
Arrival of interstage adapter May 14
Arrival of payload May 14
Erection of Atlas 156D May 18
Erection of interstage adapter May 19
Arrival of Centaur 6C May 25
Erection of Centaur 6C May 27
Arrival of insulation panels June 1
Arrival of nose fairing June 14
Erection of insulation panels June 15
Encapsulation of payload July 8
Mating of encapsulated payload July 9
Quad tanking July 13
Flight Acceptance Composite Test 1 July 28
Demating of payload July 28
Partial tanking test July 29
Mating of payload Auvgust 1
Flight Acceptance Composite Test 2 August S
Composite Readiness Test August 6
Attempted launch August 10

Launch August 11




IV. MECHANICAL GROUND-SUPPORT EQUIPMENT AND FACILITIES

SUMMARY

A1l mechanical ground-support equipment and facility equipment functioned
satisfactorily during the launch countdown. Minor problems, consisting of a
failed hydrogen storage tank vent stack igniter and a possible leaking Centaur
IOz flow-control valve were encountered.

PROPELLANT-TOADING SYSTEM

Performance of the propellant-loading system was satisfactory throughout
the countdown with only two minor problems encountered. The hydrogen storage
tank vent stack igniter failed at approximately T - 200 minutes. It was de-
cided, with Range Safety concurrence, to continue the countdown without the
burner. At approximately T - 60 minutes it was reported that the Centaur LO2
loading flow-control valve leaked 10, into the Centaur tank. It was speculated
that the valve may not have been in a fully closed position when the storage
tank transfer pressure was raised to 145 psig.

LH2 Systems

The liquid-hydrogen transfer system consists of a vacuum-jacketed Lis stor-
age tank, a vaporizer for transfer pressure, a flow-control unit, and a vacuum-
Jacketed transfer line. The system delivers LHo at an approximate rate of
750 gpm. Gaseous helium is used for purging the transfer and storage-tank vent
lines before and after tanking. The storage tank is pressurized to 12 psig for
chilldown and 38 psig for transfer. On the AC-6 launch, however, the maximum
transfer pressure achieved was 29.2 psig. This anomaly had also occurred on
quad tanking but not on subsequent testing. This pressure, however, was ade-
quate for LH2 transfer.

L0, Systems
The IO2 transfer system consists of a 38 000-gallon storage tank, a vapori-
zer for transfer pressure, a flow-control unit, and a topping system with an
LN2 subcooler. The system performed satisfactorily with the only anomaly being
the Centaur flow-control-valve leakage mentioned previously.

LIQUID-HELIUM CHILLDOWN

Liquid-helium chilldown was initiated at T - 23 minutes. The IHe flow-
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control and line-dump valves are both opened for chilldown. When the dump-
valve temperature reaches -200° F, it is closed. C-1 and C-2 pump temperatures
are controlled by the flow-control valve and a -310° F temperature is required
for both pumps at 15 minutes prior to T - 0. There were no problems in the sys-
tem, and approximately 180 gallons of LHe were used for pressurizing the storage
Dewar, line chilldown, engine chilldown, and depressurizing the Dewar.

PRESSURIZATION SYSTEM
A1l pneumatic systems performed within required limits as follows:

Primary helium supply:

Minimum - 1500 psig from T - 90 minutes to engine start
Actual - 4500 psig

Emergency helium supply:

Minimum - 3500 psig from T - 20 minutes to engine start
Actual - 5000 psig

Routine GN2 supply:

Minimum - 2300 psig from T - 90 minutes to engine start
Actual - 4500 psig

Environmental GN2 supply:

Minimum - 900 psig from start of Centaur tanking to launch
Actual - 1900 psig

UMBILICAL. BOOMS

This was the first Centaur launch to use horizontal swing booms. This sys-
tem consists of one upper and one lower boom that are swung in opposite direc-
tions by separate hydraulic rotary actuators. Boom rotation is actuated by
solenoid firing valves that are energized by the 2-inch motion signal. The
lower boom rotation starts 0.25 second later than the upper boom as a result
of a time-delay relay in the lower-boom firing circuitry.

Upper Boom

The upper boom has four electric umbilical plugs, the GHs vent line, and
the Surveyor and Centaur air-conditioning ducts. The umbilical plugs are elec-
trically ejected at approximately T - 4 seconds with a lanyard backup in the
event of failure of the electric ejectors. This lanyard is retracted by a hy-
draulic cylinder. The upper boom rotation times are given in the following
table:

20 SBhNSENTS
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deliaby,

Degrees from Time, Required time,
rest sec sec
3 T + 0.53 | Prior to T + 1.50
21 T + 1.50 { Prior to T + 3.00
50 T + 3.89 | Prior to T + 4.70

The lanyard cylinder retraction started at T - 2.75 seconds and completed its
stroke in 0.80 second. The required timing is between 0.80 and 0.96 second.

Lower Boom

This boom supports the IO, and LHp transfer lines, the aft pneumatic panel
lines, IH2 and I02 fill and drain valve actuation and purge lines, the T - O
electric umbilical, the insulation-panel purge-bottle charge line, and. the
interstage-adapter air-conditioning duct.

This boom has two lanyard cylinders, one for the T - 4 umbilicals and one
for the T - O umbilicals. In most cases, these lanyards act as a backup for
the primary disconnect mechanism (electric, pneumatic, or static lanyard). The
T - 4 cylinder stroke started at T - 3.05 seconds and stopped at T - 1.78 sec-
onds well within the 1.20- to l.60-second requirement. The T - O cylinder
stroke started at T + 0.20 second ending at T + 1.02 seconds or 0.82 second
total. The required time is between 0.80 to 0.96 second. The lower boom rota-
tion times are presented in the following table:

Degrees from Time, Required time,
rest sec sec
13 T + 1.42 | Prior to T + 1.7
35 T + 2.63 [ Prior to T + 3.2
55 T+ 3.82 | Prior to T + 4.4

ENVIRONMENT CONTROL SYSTEM

The environmental control system provided the required air-conditioning
supply temperatures and flow rates to the vehicle, except for the flow to the
interstage adapter. After the launch it was discovered that the orifice plate
was installed backwards in the test tool used to set the flow rate to the inter-
stage adapter. Tests run on October 8, 1965 showed that reversing the orifice
plate causes a 25-percent error in calculated flow rate. Consequently, flow
rate to the interstage adapter during the countdown exceeded the specified upper
1limit of 178 pounds per minute.

Air-conditioning-system performance during the launch countdown, from the
start of IOz tanking until lift-off, was as follows:

wSnRihbiiih* 21



Requirements - 85°#5° F; 75%3.5 1b/min

Actual - 84° to 85° F; 74 1b/min
(temperature measurement at disconnect, landline measurement
number CN1560T; ref. 5)

Payload:

Centaur electronic compartment:

Requirements - 48°#5° F; 7944 1b/min

Actual - 47° to 49° F; 82 to 73 1b/min
(temperature measurement in duct on umbilical tower,
CN1191T).

From 08:00 EST until 1lift-off, pressure oscillations of as
much as *3 in. of water occurred in the ducts, at about
6-min intervals. Flow rates noted are based on mean pres-
sure values.

Interstage adapter:

Requirements - 137.5°%7.5° F; 16414 1b/min

Actual - Temperature at start of LO, tanking was 120° F and rose to
13C° F in 25 min. During the remainder of the countdown,
temperature rose slowly to a maximum of 134° F at lift-off
(temperature measured in duct on umbilical tower, CN1274T).
Temperature measured at the disconnect (CN1557T) was 5° to

6° F lower than CN1274T. Flow rate was 195 lb/min.
Atlas pod:

Requirements - 50° F maximum; 32 lb/min minimum

Actual - Temperature rose from 46.5° F at start of LOp tanking to
49.4° F at lift-off (temperature measured in duct at base of
umbilical tower, AN1342T). Flow rate was between 40 and 41
1b/min.

Atlas thrust section:

Requirements - Over the range from 60 to 80 lb/min, minimum temperature
ranges from 180° to 147° F. :

Actual - Temperature rose from 165° F at start of 10, tanking to
170° F at T - 5 min. After switch-over to GNo, temperature
dropped to 169° F. Flow rate was 84 lb/min until T - 5 min
and dropped to about 77 1b/min after switch-over to GNs.

The air-conditioning GNp supply was supplemented by operation of the LNo
vaporizer at Complex 36A, from 03:00 to 09:31 EST. This accounts for consump-
tion of 2250 gallons of LN, from the Complex 36A Dewar.

The available and consumed quantities of the propellants and gases and
thelr usage are given in table IV-I.
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TABLE IV-I. - PROPELLANT AND GAS USAGE

Propellant Usage Available | Consumed
or gas
GN2 Routine use, scf . 121 000 33 200
Air conditioning, scf . 1 555 000 490 000
LNo tank pressurization, sef . . 52 200 23 100
Launcher holddown, scf . 13 800 |[Negligible
GHe Insulation-panel and engine purge, scf . 440 000 | 111 000
Primary, scf . e e e 95 200 20 100
Emergency, scf . . . « . « « . . 49 000 15 100
LHe gal 1 000 180
Lo, gal 38 100 30 800
LHo gal 22 000 12 000
RP-1 gal 15 000 13 400
LN2 Complex 36B, gal . 25 750 3 250
Compiex 364, gal . 15 000 2 250
23




V. TRAJECTORY

SUMMARY

The Atlas-Centaur AC-6 vehicle, targeted for a September 28 launch oppor-
tunity, was launched on time August 11, 1965 at 0931:04.430 EST. The flight was
so near nominal that the transfer orbit of the Surveyor model passed through the
"paper moon" without the need of a midcourse correction. To place the payload
in the desired target area on the lunar surface would have required a midcourse
correction of only 4.25 meters per second. The booster launch vehicle exhib-
ited the characteristic lofted trajectory profile, which has been observed in
the previous flights (ref. 6). To account for this anomaly, a new drag model,
which draws on flight observations as well as on wind-tunnel data, has been
adopted. Most significant, aside from yielding a more satisfactory acceleration
history, the new model reveals a substantial gain in payload capability for op-
erational Surveyor flights. The Atlas sustainer engine operated with 1.6 per-
cent higher specific impulse and 2.3 percent higher thrust levels than nominal.
A further look at the engine model simulabtions may be suggested by this finding.
Centaur engine specific impulse, though above acceptance test levels, was well
within the three-sigma deviation of that predicted. The guldance system prop-
erly compensated for the "hot" booster and targeted to the proper injection con-
ditions. :

TINTRODUCTION
Trajectory Definition

There are two main purposes for a postflight trajectory analysis effort.
The first is to verify or improve the preflight trajectory simulation technique
and thus to increase confidence in the FPR and payload capability calculations
for operational flights. The second purpose is the determination of the best
estimate of the actual vehicle performance. The analysis was performed first by
comparing the preflight prediction with the observed trajectory and, second, by
reconstructing the flight using the computer simulation.

The preflight or predicted trajectory was determined with the ground rules
and weights of reference 7 and for the actual time of launch using a computer
trajectory program. For trajectory evaluation, a guidance-based trajectory
(GET) was accepted as the best estimate of the actual trajectory. Normally, the
best estimate of trajectory (BET) consists of ground-based tracking data, which
are received from AFETR in the form of position, velocity, and accelerstion com-
ponents. The reconstruction program, which was used as part of the trajectory
analysis, required a smooth set of tracking data for matching. The GET data
were found to be more consistent and smoother than the BET data. During the
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first 20 seconds of flight, the ETR determined BET data were of poor quality be-
cause of the absence of optical tracking. Beyond T + 620 seconds, the noise
level of the BET became excessive, because the range of the Glotrac, a high-
precision tracking system, was exceeded at this time. After the loss of Glo-
trac, the three-sigma deviations of the tracking position and velocity compo-
nents were one and two orders of magnitude, respectively, greater than prior to
its loss. Even within the intermediate period between T + 20 and T + 620 sec-
onds, the smoother GET provided a better opportunity to study trends and pat-
terns in the component differences (residuals) of the actual and reconstructed
trajectories.

The trajectory was reconstructed with the same computer program used to
determine the preflight predicted trajectory. Performance and steering param-
eters were adjusted until the computed position and velocity components best
matched the GET components in a weighted least-square sense. The adjusted val-
ues of the Atlas performance and steering parameters differed little for BET
versus GET. However, the noise in the residuals was lower, and the selection of
data points to be matched along the trajectory was less subjective with the
smoother GET. The residuals, which resulted from the least-square match, were
subjected to further investigation to determine changes in the model needed for
a more satisfactory match and thus for a better simulation of the actual flight.

Rawinsonde Atmosphere Data

Atmospheric conditions and wind profiles at the time of launch are neces-
sary for a proper postflight reconstruction. Launch conditions were determined
at the site at 0940 EST, approximately O minutes after lift-off. Profiles of
these measured temperatures and pressures as a function of altitude are com-
pared with those assumed for the preflight trajectory (fig. V—l(a)). Only
slight variations were evident between the measured and preflight values. Raw-
insonde launch winds are presented in figure V-l(b). Zero magnitude winds, in
lieu of light winds normal for September, were used in the preflight simulation
of AC-6. The measured east-west components below 40 000 feet, where aerody-
namic forces are most prevalent, agreed well with the preflight estimates;
however, the north-south components in the same altitude region were approxi-
mately 20 feet per second out of the south. This wind, for an otherwise nominal
flight, would have tended to bias the trajectory to the left of predicted. The
presence of winds also affected the angle of attack throughout booster operation,
as discussed in section IX, VEHICLE STRUCTURES AND SEPARATION SYSTEMS. Above an
altitude of 40 000 feet, the winds have much less effect on the trajectory.

Comparisons of profiles of dynamic pressure g and Mach number M of the
preflight simulation with the profiles derived from Rawinsonde data and the ob-
served trajectory are presented in figure V-2. Both g and M from T + 60 to
T + 120 seconds were higher for the actual than for the preflight predicted tra-
Jectory. It is noteworthy that this time corresponds to the interval of highest
drag, and also that values of q and M higher than those predicted were seen
on earlier Atlas-Centaur flights through this time interval.

g
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Telemetry and Other Measured Data

The preflight trajectory, as previously mentioned, was determined for
nominal or predicted conditions. Variations in any actual condition, which may
cause a change in the trajectory, should be incorporated, when possible, in the
postflight reconstruction. The measured atmosphere and winds are included.

The best estimate of the actual propellant and hardware weights were used in
the reconstruction and are compared in table V-I with those of the preflight.
Actual histories of several parameters, which affect engine operation and which
are variables of the propulsion models, were obtained from telemetry data. The
operation of the Atlas engines was simulated by a computer-programed detailed
propulsion model (DEPRO), which includes effects due to ambient pressure, pro-
pellant densities, and pump inlet pressures and to operation of the sustainer
propellant-utilization (PU) system.

Anbient pressure was determined as a function of altitude from the launch
atmosphere profile. The density of RP-1 was fixed at its launch time value of
50.38 pounds per cubic foot; that of I02 was calculated from telemetry
temperature-pressure data. Propellant-tank ullage pressures, which are used in
DEPRO to determine pump inlet pressures, and the history of sustainer PU valve
position were other telemetered data used in the reconstruction.

The telemetered inlet temperatures and pressures and the PU valve position
for the two Centaur engines were used in the Pratt & Whitney (P & W) Regression
equations to determine variations of the thrust and specific impulse of the
engines. Because the telemetry history of the ILHs inlet ftemperature for the
C-1 engine was not acceptable, it was replaced by the LH2 temperature history of
the C-2 engine in the reconstruction.

Time histories of vehicle thrust attitude in pitch and yaw, relative to the
launch inertial reference coordinate system, were derived from the telemetered
values of the time integrals of the three guidance system accelerometers. These
attitude histories were used to steer the vehicle during the guided portion of
the postflight reconstruction in lieu of the guidance equations. Experience
with the reassembly of AC-4 showed that a guidance simulation distorted the it-
eration process of the reconstruction. The guidance equation corrected for per-
formance dispersions that had been introduced by the adjusting procedure used to
search for the best performance values. Use of guidance-derived attitudes avoid-
ed this distortion.

RESULTS

Trajectory parameters are presented in table V-II for the predicted, ob-
served, and reconstructed trajectories. A detailed trajectory listing is pre-
sented in appendix C. The observed and reconstruction values are in good agree-
ment with each other and are in fair agreement with the predicted values.
Another indication that the actual flight was near that desired is that the in-
Jection orbit elements (table V-III) are in reasonable agreement. The actual
values were determined from 48 hours of spacecraft tracking by JFL. Based on
these observations, a midcourse correction of only 4.25 meters per second would
have been required to impact in the desired lunar target area. This is well
within the projected capabilities of the AC-7 spacecraft, the first Surveyor
that will attempt a midcourse maneuver and soft lunar landing.
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Values of vehicle performance were obtalned from the trajectory reconstruc-
tion. In order to achieve a satisfactory fit of the observed trajectory, a mod-
ified aerodynamic drag model was used. A more detailed discussion of this model
and its significance is presented later in this section. The reconstruction, as
mentioned previously, was performed by adjusting vehicle performance and atti-
tude parameters until the reconstructed trajectory best matched the observed
velocity and position components in a weighted least-square sense (ref. 6).
Prior to the reconstruction of the flight, several observations regarding the
trajectory were apparent. As shown in figure V-3, the actual trajectory was to
the right of and slightly lofted above the preflight profile. The bias to the
right would appear to be a launch azimuth difference. The lofted trajectory had
been the trend observed on previous Atlas-Centaur flights. Discrepancies in
velocity (fig. V-4) and thrust acceleration (fig. V-5) indicated that there had
also been greater-than-predicted acceleration during the booster phase. Both
the lofted trajectory and the high thrust accelerations can result from better-
than-predicted booster performance and/or a variation of the flight aerodynamic
drag characteristics from those predicted. The study of a similar phenomenon
on the AC-4 flight indicated that a discrepancy in the drag characteristics was
the principal cause (ref. 6). This anomaly for AC-6 is discussed later in more
detail. Velocity and thrust acceleration comparisons (figs. V-4 and 5) indi-
cated performance other than the predicted performance during sustainer solo and
Centaur phases. During sustalner solo operation, the differences, in part, can
be attributed to the shift in BECO time for the predicted and actual flights.

For the reconstruction, five attitude factors were tuned during the Atlas
phase of the reconstruction: (1) attenuation factor on the nominal booster
pitch-rate profile, (2) initial pitch-over azimuth, (3) initial pitch attitude
from T + 0 to T + 15 seconds, (4) and (5) attenuation factors on the sustainer
pitch and yaw guidance-derived-attitude histories. In addition, the thrust
and specific impulse levels, that is, reference values, of the booster and
sustainer engines, and the effective time of BECO, were modified for the
trajectory match. It should be noted that engine transient models, such as the
booster engine decay model, were used in the reconstruction. Consequently, any
deviation between the predicted booster engine shutdown model and the actual
shutdown transient would be compensated for by a shift in the computed time of
BECO. During Centaur phase, thrust and specific impulse of the engines were
adjusted. Again, to compensate for any discrepancies in either the Centaur
engine buildup model or the sustainer engine decay model, an effective time of
MES was determined. Attenuation factors on the Centaur pitch- and yaw-attidude
histories and constant drift rates in pitch and yaw completed the 1list of ad-
Jjusted parameters for the Centaur reconstruction.

Atlas Parameters

The adjusted and the preflight propulsion parameters are presented in
table V-IV. Preflight reference values and the reconstruction reference values
of the propulsion model are compared. Additionally, specific inflight values,
which are tabulated at T + 2 seconds for the Atlas and T + 300 seconds for the
Centgur, are compared. These latter data show not only the difference in ref-
erence performance, but also the effect of deviations from predicted engine
inlet conditions and PU valve histories.
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Specific impulse and thrust of the engines were determined with the refer-
ence booster mixture ratio fixed at the preflight reference value. The adjusted
reference specific impulse of the booster engines was slightly less (-1.3 per-
cent) than the standard reference value, while engine thrust value maintained a
near nominal value, up only 0.4 percent. Reference values of sustainer per-
formance required larger adjustments. Increases in reference thrust and spe-
cific impulse of 2.3 and 1.6 percent, respectively, were needed. These ad-
justments were significantly greater than the three-sigma deviations of this
engine and therefore were of concern. A similar increase in specific impulse
was obtained over near-constant thrust regions of sustainer solo operation,
when the slope-impulse technique (ref. 6) was applied to the reciprocal of
guidance-based thrust accelerations. This check, in addition to the relatively
small and random thrust acceleration residuals of the reconstruction during sus-
tainer solo (fig. V-6) supports the higher sustainer performance.

An improvement in the match of observed position and veloecity components
was further attained by adjusting attitude parameters of the trajectory. A
cross-range drift to the right by the actual trajectory from the predicted is
indicated in figure V-S(c). In order to account for this cross-range drift,
the initial roll to pitch-over azimuth was adjusted. The actual pitch-over azi-
muth was determined as 94.92°, which is 0.38° greater than that indicated for
the launch time. Integration of the telemetered roll rate during the initial
15 seconds after 2-inch motion gave an azimuth of 94.9°, in good agreement with
the computed adjusted value. An attenuation factor on booster pitch-rate his-
tory was increased 0.5 percent, possibly compensating for step errors in the
autopilot or uncorrected drifting of the autopilot. The initial pitch attitude
of both the booster and the sustainer steering profiles required minor adjust-
ments to improve the trajectory match.

The final residuals of thrust acceleration, veloeity, and position compo-
nents during Atlas operation are presented in figures V-6(a), 7(a), and 8(a).
Except during engine transient times, the velocity residuals were below 3 feet
per second, and position residuals were below 60 feet.

Centaur Parameters

The match of position and velocity components during the Centaur phase was
not as good as the Atlas match. Reconstruction residuals for this phase are
presented in figures V-6(b), 7(b), and 8(b). Maximum velocity and position re-
siduals were approximately 5 feet per second and 200 feet, respectively, except
for the last 20 seconds of powered flight. During this portion of the flight,
the pseudo-guldance simulation and possible limitation of the engine model may
have contributed substantially to the relatively poor fit.

The thrust acceleration residuals (fig. V-6(b)) showed a pattern of error
amplitudes that could be correlated with the larger amplitudes of the Centaur PU
valve cycle shown in figure 5 of section VII. This correlation is particularly
evident between T + 340 and T + 380 seconds, and after T + 660 seconds, at which
time it was indicated that the PU valves were at the IO,-rich limit. This cor-
relation suggests that the PU valve may have, at times, exceeded the limits of
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the engine performance model, which had been derived for small variations in in-
let conditions and PU valve angle.

The reconstructed Centaur thrust level, derived with the P & W engine model
for the measured engine conditions, was less than 1 percent below the acceptance
test wvalue (table V-IV). The adjusted reference specific impulse was determined
as 435.9 seconds, well within the range of acceptable dispersion. An indepen-
dent calculation of specific impulse was made with the slope-impulse technique,
which requires a constant thrust (the mean of a sinusoidal thrust will satisfy
the constant thrust requirement). For this method, a specific impulse of 435.5
seconds, consistent with the reconstruction value, was obtained.

An engine build-up model was derived for the reconstruction from the thrust
acceleration history following the Centaur engine ignition signal. To compen-
sate for errors in the engine transient models of sustainer shutdown and main
engine startup, the time of the main engine start (MES) signal was adjusted in
the reconstruction. The computed MES was 242.63 seconds, approximately 0.14
second earlier than the measured discrete event (table V-II).

As in the Atlas reconstruction, it was necessary to adjust the guidance-
based attitude histories used to orient the vehicle in the reconstruction. To
reduce the residuals of velocity and position during the Centaur phase, the
attitude histories, in pitch and yaw, respectively, were adjusted with attenua-
tion factors of 0.9978 and 0.9976 and with a drift rate of 0.00011 degree per
second to the left in the yaw plane and 0.00080 degree per second up in pitch
plane.

Aerodynamic (Drag) Models

Reconstruction of the AC-4 trajectory (ref. 6) and preliminary attempts of
reconstruction of AC-6 indicated that the standard drag coefficient Cyx model
did not accurately represent flight axial forces. This preflight model (Model I
of fig. V-9) is employed to compute drag simply as the product ¢, Cx, and the
reference area, A.

When this model was incorporated in the AC-6 reconstruction, a large re-
sidual pattern resulted during the high-dynamic-pressure (q) period of the
flight from T + 60 to T + 110 seconds (fig. V-10). A similar pattern was ob-
served in the AC-4 reconstruction, and the drag model was believed to be at
fault. On the basis of AC-4 results, as well as flight data of other Atlas
flights, GD/C formulated a new drag model (Model IT of fig. V-9). This model
separates the drag into three major components, g-sensitive drag, base force,
and holddown force. The g-sensitive drag, with fore body and aft body contri-
butions, is dependent on Mach number, dynamic pressure, and vehicle cross-
sectional area. The base force results from recirculation of mass from the
engine exhaust Jets to the base of the vehicle. The magnitude of this base

force 1s generally determined from flight measurements rather than wind tunnel
tests.

The holddown force improves the match of thrust acceleration obtained by
optical tracking during the first 10 seconds after 2-inch motion (fig. V-11).
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This force is believed to be caused by the restraining forces of the launcher
and effects of ground proximity. This force was included as an exponential
force decaying from a maximum at lift-off to zero at 10 seconds.

The drag models and their reconstruction acceleration residuals are pre-
sented in figures V-9 and 10. The GD/C drag model (Model II) is of the form

_ ) 2.3917
DRAGy = -4500(1.0 Pamb/Psl) + chXII + 41.29(10.0 - %)

Pamb/Psl ratio of ambient pressure to sea level pressure

A reference area, 78.5 sq ft
CX standard drag coefficient
t time from lift-off (0 <t < 10), sec

The first expression on the right of the equation gives the base force,
with a vacuum value of 4500 pounds; the last term gives the holddown force with
a maximum value of approximately 10 000 pounds.

The inclusion of Model II, which greatly improved the trajectory match,
still left a residual pattern between T + 60 and T + 80 seconds {fig. V-10).
Since the booster engine thrust was increased from 154 000 pounds for AC-4 to
165 000 pounds for AC-6, it could be anticipated that the vacuum base force
would increase with the higher Jjet pressure associated with the uprated engines.
Consequently, a third drag model, patterned after the GD/C Model II, was derived
specifically for the AC-8 reconstruction. In addition to adjusting the base-
force term and the drag coefficients, the initial heolddown force was tailored to
the optical tracking data (fig. V-11). The resulting drag model (Model III) is
of the form

2.3917

DRAGy7 = -5000(1.0 - P_ . /P ) + chXIII + 16.516(10 - t)

where O <+t < 10. This model increased the vacuum base force from 4500 to
5000 pounds, readjusted the Cyx function (fig. V-9), and reduced the holddown
force to 40 percent of that of Model II. The effects on thrust acceleration re-
siduals with this revised model are shown in figures V-10 and 11.

Model III did not significantly change the values of the reconstruction
booster performance parameters from those determined by Model II. The thrust
increased 0.03 percent, and specific impulse decreased by 0.04 percent for
Model ITII. Sustainer performance showed no change in specific impulse and a
0.05-percent decrease in computed thrust level.

A net payload increase for an operational vehicle, AC-15, of 83 pounds for
Model IT and 85 pounds for Model III results when the new models replace the
standard drag model, Model I. The results of the reconstruction presented in
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the tables and figures were obtained with Model III. In summary, Model II, the
new standard preflight drag model, yields a good acceleration match for AC-6.
This can be further improved as indicated by the results based on Model III;
however, the differences in residuals for the two models are small and may be
within inherent flight-to-flight variation. Regardless of which model was used,
there still existed large residuals in thrust acceleration and velocity during
the 10 seconds prior to BECO. These residuals, evident in figures V-6 and 8,
suggest the need for further study of the drag and/or propulsion models, 1f the
same patterns of residuals repeat in future flights.

Atlas Propellant Residuals

An indication of the accuracy of the engine performance models is how well
they predict the amount of each propellant remaining in the vehicle tanks.
Previous reconstructions have indicated that the Atlas propulsion model could be
improved by increasing the number of independent variables considered (ref. 8).
However, this new model has not been incorporated into the simulations used in
this analysis. The current Atlas propulsion model is referred to as the 6 vari-
able DEPRO; the proposed new model (ref. 8) is referred to as the 12 variable
DEPRO.

Fstimates of the fuel and oxidizer residuals in the Atlas tanks were made
on the basis of sensor uncovery times. It was indicated that approximately
294 pounds of RP-1 and 418 pounds of LO, remained. The postflight reconstruc-
tion, which included simulation of measured sustainer PU valve position that
was on the LOg-rich limit most of the flight, indicated that approximately
490 pounds of RP-1 and 123 pounds of LO2 were left. Thus, the total residuals
were about 100 pounds less than estimated and were accepted as adequate for the
purposes of the reconstruction; however, the imbalance between fuel and oxidizer
residuals was larger than desired. There is evidence that this may be a result
of an inadequacy on the part of the 6 variable DEPRO model.

Using the data of reference 8, which indicated approximately a O.5-percent
decrease in booster mixture ratio when the 12 variable model was used rather
than the 6 variable model, showed that the oxidant-fuel ratio of the residuals
from the reconstruction could be changed from about 0.25 to 1.92. This value
would be in better agreement with the estimated residual oxidant-fuel ratio of
1.42. Consequently, the use of the 12 variable model should yield a better es-
timate of the propellant residuals. An accurate means of predicting the re-
siduals is needed in preflight simulations, so that the booster engines may be
properly orificed and the sustainer PU valve suitably biased prior to flights.
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TABLE V-I. ~ TRAJECTORY ANALYSIS WEIGHT SUMMARY
Weight, Preflight® | Postflight Trajectory
1b estimate estimate reconstruction
Total at lift-off 302 073 303 536 bz03 536
At BECO (before staging) 79 117 | e--e--- 80 529
Booster jettison® 7 355 7 354 b7 356
Insulation 1 226 1 225 b1 225
Nose fairing 1 995 2 005 b2 005
Total at separation 44 562 44 833 44 731
Sustainer residual propellantd 475 712 613
Sustainer jettison® 7 700 7 713 b7 710
Centaur and payload at 1lift-off | 39 848 39 892 bzg 892
Boost-phase Centaur loss: 3 461 3 484 bz 484
Oxidant (126) (58) (bss)
Fuel (58) (129) (b129)
Hardware and miscellaneous (3 2177) (3 297) (b3 297)
Centaur at separation 36 387 36 408 b35 408
Total weight at MECO 6 372 6 474 6 580
Centaur residual propellant:d 188 294 400
Oxidant (107) (203) (333)
Fuel (including PU residual) (81) (91) (67)
Centaur jettison 4 084 4 096 b4 096
Payload 2 100 2 084 b2 084

@Based on date of appendix A of ref. 7.
ased on the best postflight weight estimate.
CIncludes residual lubrication oil and trapped propellant.

Propellant above pump inlet.
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TARLE V-II. - TRAJECTORY PARAMETER COMPARISON
Parameter BECO Insulation{Nose-fairing| SECO |Separation| MES
Jettison Jettison
Time;a sec
PlannedP 142.061( 172.061 197.061 235.268| 237.268 243,768
Actual 141 79 | 171.62 196. 47 234.10 236. 22 242. 77
Reconstruction|€141.879( 171.72 196. 49 234.39 236. 22 C242.634
Altitude, n. mi.
Planned 31.430| 47.682 60. 261 78. 391 79. 307 82.178
Actuald 31.841| 48.324 61.092 79. 289 80. 277 83. 223
Reconstruction| 31.893| 48.377 61.103 79. 426 80. 279 83.170
Range, n. mi.
Planned 42.024| 80.056 115. 444 177.484| 181.019 192. 494
Actual 42.271| 80.488 116.076 177.9211 181.716 193,434
Reconstruction 42.383 80. 624 116.106 178.441( 181.720 193. 200
Relative velocity,® ft/sec
Planned 8073 8861 9680 11 334 11 327 11 280
Actual 8152 8972 9810 11 487 11 483 11 430
Reconstruction 8172 8976 9810 11 496 11 490 11 444
Inertial velocity, ft/sec
Planned 9313} 10 141 10 984 12 664 12 659 12 616
Actual 9390| 10 251 11 113 12 817 12 815 12 767
Reconstruction 9410 10 254 11 113 12 827 12 822 12 780
Axial load factor, g's
Planned 5.700 1.252 1.426 1.378{ 0.00024 0.00024
Actual 5.69 1.27 1.45 | emmee]| mmmmeee | amemea-
Reconstruction 5.757 1.278 1.454 1.471 00024 00024

%ime from 2-in. motion (0931:04.430 EST).

refer to the beginning of thrust decay or weight separation.
are taken from table II-I.
A1l planned values are taken from a simulated trajectory based on ref. 7
and using the actual time of launch.
CEffective time compatible with the engine build-up simulation used in re-

construction.

Planned and reconstruction times
Actual times

da1l actual values were determined from corrected telemetry guidance data.
©Velocity referenced to a coordinate system fixed with rotating Earth.
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TABLE V-III. - SPACECRAFT ORBIT PARAMETERS
Parameter Predicted® ActualP Reconstruction
TimeC of epoch, sec 678 679.2 679. 32
Inclination, deg 28. 59 28.56 28.55
True anomaly, deg -5.89 ~5.16 -5.75
Semimajor axis, n. mi. 229 843.56 | 224 365.98 224 364.23
Perigee altitude,™ n. mi. 90. 14 90.19 90. 94
Apogee altitude,d n. mi. 452 708.95 441 753.77 441 749.52
Eecentricity 0. 9846 0.9842 0.9842
Period, days 31.989 30. 853 30.852
Energy, sq ft/sec2 -5 039 728 | -5 162 766 €.5 162 808
Injection conditions
Latitude, deg 23.034 22.981 22.984
Longitude, deg 307. 258 307. 449 307.539
Radius, n. mi. 3 543.43 3 543.20 3 543.79
Flight path angle, deg -3.039 -2.968 -2. 966
Azim.uth,g deg 108.143 108. 166 109. 249
Relative velocity, ft/sec 34 647.21 | 34 645.67 34 640.18

8Data obtained from Lewis Research Center preflight nominal

trajectory.

bpata obtained by Jet Propulsion Laboratory from spacecraft

tracking.

CTime measured from 2-in. motion {from 0931:04.430 EST).
dMeasured above a spherical 3444-nautical-mile-radius Earth.
€Reconstruction trajectory terminated at Jet Propulsion Labora-

tory determined energy.

fAngle between relative velocity vector and local horizontal.
€Angle of relative velocity vector measured clockwise from true

north.
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Thrust acceleration residuals, g's
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Inertial velocity residuals, ft/sec
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Inertial position residuals, ft
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Aerodynamic drag coefficient, C,
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VI. PROPULSION

SUMMARY

The Atlas and the Centaur propulsion systems both performed adequately for

the AC-6 flight. For the first time, a successful vehicle retromaneuver was
demonstrated.

ATLAS

The AC-6 was the first successful Centaur flight to utilize 165 000-pound-
thrust booster engines. ©Some Atlas steady-state operating conditions are pre-
sented in table VI-I. All propulsion system parameters appeared normal through
the booster phase of flight. Nominal performance adjusted for engine inlet con-
ditions (ref. 6) in terms of thrust specific impulse, and mixture ratio is
presented in table VI-II. The Atlas propulsion system appeared to operate
nominally throughout the flight.

CENTAUR
Major changes in the AC-6 propulsion system included:

(1) Installation of RL10OA-3-1 engines

(2) Strengthened propellant supply ducts to withstand RL10A-3-1 engine-
shutdown pressure spikes

(3) Installation of a separate LHe chilldown manifold and overboard vent
for each engine

(4) Increase in boost-pump lead or deadhead time
(5) Relocation of the venturi in the C-1 LOp duct bleed system

(6) Installation of duel-element temperature probes for both the IHs and
102 turbopump inlets

Additional system changes resulting from the failure of the C-1 LiHs turbopump
inlet temperature probe to indicate liquid during quad tanking (see section

I1T, PRELAUNCH ﬂlb'l'Ut{I) include the following:

(1) Relocation of the venturis in the IHp duct recirculation systems to the
Junction with the main LHp supply duct
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CONRDENTIES

(2) Insulation added on both the dual-element probes and the LHp recircula-
tion system branch lines

(3) Installation of foam insulation rings on the LH2 supply ducts extended
to cover the engine inlet flange

(4) Reversal of the flow direction in the ILHgp duct purge system

One primary discrepancy occurred during the operation of the Centaur pro-
pulsion system: a thrust chamber pressure overshoot, in excess of that normally
experienced, occurred on both engines during the start transient. Although the
effect of this overshoot on the AC-6 flight was negligible, had conditions been
more severe, the engines might have falled to accelerate.

MATN ENGINES

During a typical engine start transient, the turbopump speed and engine
chamber pressure rise to their peak at approximately the same time. When flow
commences from the engine turbopumps to the combustion chamber, a corresponding
drop in pump inlet pressure occurs. Following the peak transient flow, when
flow rate begins to stabilize, pump inlet pressure increases toward a steady-
state operating level. This recovery of pump inlet pressure normalily takes
place just prior to the peaking of engine chamber pressure and turbopump speed.

Turbopump speed and engine chamber pressure during the start transient for
both the flight and the engine acceptance tests are presented in figures VI-1
and 2. Although chamber pressure and turbopump speed peaked at approximately
the same time during flight, turbopump speed began its rise early relative to
chamber pressure. The chamber pressure lag could have resulted from a temporary
starvation of flow to the LO2 turbopumps.

Turbopump inlet pressures and temperatures during the start transient for
flight and for the engine acceptance tests are presented in figures VI-3 and 4.
Both the LO2 and the fuel pump inlet pressures on AC-6 dropped to values con-
giderably below those of the acceptance tests and also below those experienced
on previous flights. The recovery of LO2 pump inlet pressure during the AC-6
start transient did not take place until approximately 0.2 second following the
time of peak chamber pressure. This presents additional evidence of flow star-
vation to the IOo turbopumps.

Plots of fuel and LO2 pump NPSP during the flight start transient are pre-
sented in figures VI-5 and 6, respectively. The NPSP for both LO2 and fuel
dipped to near the saturation line, whereas on previous flights, the minimum
values were well above the steady-state operating limit.

The foregoing sequence of events suggests that both LOo turbopumps momen-
tarily cavitated. The combination of chamber pressure and turbopump speed over-
shoot, the fact that the turbopump speed led the chamber pressure during the
start transient, and the lag in LOs pump inlet pressure recovery indicate that
the LO2 turbopumps were momentarily unloaded. The speed overshoot could have
been caused by a combination of unloading the LOs turbopumps and the high pres-
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sure ratio across the turbine that resulted from the lag in chamber pressure
rise. A quick recovery of LOp, flow following the momentary cavitation would
then account for the chamber pressure overshoot. The dip in fuel pump NPSP is

considered a result of high transient flow rates and probably did not contribute
to the overshoot.

The most likely causes of the LOo, turbopump cavitation are as follows:

(1) Gas bubble formation in the sump at the LOs boost-pump inlet causing
the L0, boost pump and the engine 0o turbopump to cavitate during the
flow transient following MES

(2) Improperly filled propellant lines resulting from a combination of ex-
cessive air-conditioning heat input and minimum chilldown

(3) Warm turbopump housing temperatures resulting from excessive heat input
from alr conditioning and insufficient cooldown

The adequacy of the propellant tank burp at SECO to suppress boiling and to
provide boost-pump NPSH is evaluated by subtracting the saturation pressure cor-
responding to the boost-pump inlet temperature from the ullage pressure after
burp. Although AC-6 did not have instrumentation to measure LO, boost-pump in-
let temperature, a correlation was made by using data from past flights. The
subtraction of the saturation pressure, corresponding to this temperature, from
the ullage pressure resulted in a -1.0-psi effective burp pressure margin,
whereas all previous flights had positive margins of at least 1.0 psi. This
negative burp pressure margin could have created a quantity of gas at the boost-
pump inlet. During the flow transient following MES, this gas could then have
been drawn through the propellant feed system causing the boost pump and the
engine LOs pumps to cavitate. To ensure against the recurrence of this problem,
the burp pressure is to be increased for all future vehicles.

Although the IO, turbopump inlet temperature probes indicated liquid at
main engine start, gas could have been trapped in the low-pressure ducts up-
stream of the probes or could have existed at the probes at saturated liquid tem-
peratures. Ground tests are currently being conducted to determine the effects
of propellant ducts partly filled with gas at main engine start.

Figures VI-7 and 8 demonstrate higher turbopump housing temperatures at
engine start compared with those of previous flights. Failure of the fuel pump
housing temperature to stabilize at 120° R during the booster phase, as exper-
ienced on previous flights, is considered to have resulted from the difference
in ground air conditioning. The contention is that, on previous flights, the
combination of LHe chilldown and GNp air conditioning was sufficient to create
a layer of nitrogen frost on the turbopump housing. During the booster phase,
the housing temperature could only warm to the melting temperature of the nitro-
gen frost; however, conditions on AC-6 were probably such that no nitrogen frost
layer formed. The warm LO2 pump housing temperature is also considered to be a

. . . . . 14 s 4~ 4 amam
result of excessive air conditioning. The effects of warm housing temperatures

will be further investigated by additional ground testing.

The use of RL10A-3-1 as opposed to RL10A-3 engines is considered to have
had a negligible effect on the problem of overshoot. Extensive ground testing
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on both engines has revealed little difference during the start transient.

The start total impulse calculated to 95 percent of rated thrust was 2860
and 3095 pound-seconds for the C-1 and C-2 engines, respectively. The differen-
tial total impulse between engines was well within specifications.

Engine steady-state operation appeared normal. Table VI-III compares some
flight steady-state values with their nominal or predicted values. The C-1 fuel
pump inlet temperature, which had created problems during quad tanking (see
section III, PRELAUNCH HISTORY), failed to record throughout the entire flight.
Engine thrust, specific impulse, and mixture ratio during steady state are pre-
sented in table VI-IV. The high mixture ratios at MES + 100 seconds are a re-
sult of activation of the propellant utilization system at MES + 90 seconds (see
section VII, PROPELLANT SYSTEMS).

Main engine cutoff appeared normal. The cutoff total impulse was calcu-
lated to be 2250 and 2400 pound-seconds for the C-1 and C-2 engines, respec-
tively. Although the differential impulse of 150 pound-seconds between engines
was satisfactory, the engine specification value of total cutoff impulse,
1180+150 pound-seconds per engine, was exceeded. BEven though excessive total
cutoff impulse also occurred on all previous flights, it is not considered a
major problem. The engine manufacturer bases its specification values on sim-
ple electrical circuitry used at the factory. The more complex vehicle elec-
trical system creates a longer delay in engine valve closure at MECO. Preflight
guidance corrections compensate for the "excessive" cutoff impulse obtained dur-
ing flight.

Engine inlet temperatures and pressures for the engine retrothrust opera-
tion are noted in figures VI-9 to 12. All indications are that the retrothrust
- operation was highly successful. For further details on this subject see sec-
tions VII, PROPELLANT SYSTEMS; XIT, FLIGHT CONTROL; and the attitude control
portion of this section. '

Boost Pumps

Boost-pump start command was initiated at approximately 39.1 seconds prior
to main engine start compared with a predicted time of 39.2 seconds. First in-~
dications of turbine inlet pressures occurred 1.5 and 1.6 seconds after BPS com-
mand for the oxidizer and fuel units, respectively. These times are considerably
below the preflight estimate of 6.7 seconds required to expel the gases trapped
in the peroxide bladder and lines. As shown in figure VI-13, turbine inlet
Pressures reached steady-state values of 140 and 88 psia for the fuel and oxi-
dizer units, respectively, which compare favorably with preflight acceptance
test values of 139.5 and 89.9 psia. Inlet pressure oscillations similar to
those experienced on previous ground and flight tests were evident. Maximum
amplitudes were experienced at the fuel turbine for the last 65 seconds of
boost-pump operation.

Both the oxidizer and the fuel turbines accelerated normally to steady-
state speeds of 38 400 and 51 150 rpm, respectively (fig. VI-14) just prior to
Prestart command. No indications of overspeed tendencies were noted during the
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separation sequence. The separation phase was of some concern because theé over-
speed control system had been found faulty and was intentionally disconnected
prior to flight.

A momentary increase in oxidizer boost-pump turbine speed, approximately
500 rpm, occurred at MES + 1.2 seconds. At this particular time in the start
sequence, the turbine speed should be decreasing steadily as a result of the in-
creased boost-pump oxidizer flow as the engine accelerates. This slight in-
crease in speed may be attributed to either (1) momentary reduction in liquid-
oxygen flow to the engines caused by engine pump cavitation, or (2) ingestion of
gas through the boost pump at MES resulting in momentary cavitation of the boost
pump.

Both boost pumps operated normally during the Centaur burn portion of the
flight with steady-state turbine speeds of 33 600 and 46 850 rpm for the oxi-
dizer and fuel units, respectively. Based on the preflight acceptance test data
and inflight peroxide bottle pressure of 307 psia, the corresponding turbine
speeds expected during flight were 32 000 and 46 380 rpm. Variations in pro-
pellant flow rates during the period of propellant utilization system control
resulted in essentially no change in turbine speeds, with the exception of the
last 50 seconds of engine operation. During this period, a 600-rpm decrease in
fuel-boost-pump turbine speed was evident. This slight reduction in turbine
speed may have been caused either by the propellant utilization valve (which was
in the fuel-rich position for the majority of this time period), or by the pre-
viously noted large oscillations in the fuel turbine inlet pressure during the
last 65 seconds of operation. The cause cannot be determined, but the magnitude
of the speed reduction is well within acceptable limits.

Post-MECO boost=-pump turbine speed decsy is shown in figure VI-15. Fuel
unit speed decay is questionable because the data are of poor quality. The oxi-
dizer unit trace is typical of previous flight data with the exception that the
coastdown time is from 65 to 100 seconds longer than any previous flight. This
extended coastdown time may have been a result of low propellant level of this
flight resulting in quicker gas pullthrough in the weightless environment.

Boost-pump turbine bearing temperatures are shown in figure VI-16. The
oxidizer unit temperature was 2430 F at MECO and continued to increase to a max-
imum value of 3000 F as a result of heat "sosk-back." Corresponding values for
the fuel unit were 3200 and 372° ¥. The maximum values obtained were well below
the 400° F upper limit permitted during acceptance testing. ILandline instrumen-
tation indicated turbine housing skin temperatures of 82° and 93° F for the
oxidizer and fuel units, respectively, just prior to 1lift-off.

Instrumentation to monitor headrise across the boost pumps was not available
on this flight; the performance of the pumps in this respect may be obtained from
the engine inlet conditions. These data are presented in the section covering
main engine performance.

Attitude Control and Hydrogen Peroxide Systems

AC~6 was the first vehicle to have the attitude control engines mounted in-
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board of the interstage adapter. As a result of this relocation, the A or
1.5 pound-thrust engines were rotated 25° outboard to reduce exhaust gas impinge-
ment on adjacent equipment (see fig. VI-17).

The Ho02 bottle pneumatic pressure is shown in figure VI-18. A relatively
long time was required to pressurize the bottle but this was expected with the
small quantity of HoOp tanked. The gradual drop in bottle pressure after lift-
off was also normal since the pressure regulator is referenced to ambient pres-
sure.

Data indicated proper conditioning of the Hy0p system prior to launch. Fig-
ure VI-19 shows the P-2 fuel supply temperature. The trace appears normal with
a slight rise as the system was being pressurized and a drop after lift-off due
to discontinuation of the ground air conditioning at that time. The supply
lines were filled with gas until the H202 engines were first fired at MECO.

Thus the lines had a small total mass and reacted rapidly to ambient temperature
changes. At MECO, the attitude control engines were enabled and fired to cor-
rect for main engine shutdown disturbances. The flow of warm H202 from the bot-
tle was responsible for the sharp increase in temperature at this time. After
the end of the retromaneuver, when the tube heaters were turned off, the supply
lines increased in temperature, followed by a decrease and then another increase.
These changes are attributed to solar heating with the vehicle rolling so that
the supply lines were alternately in and out of the sun's rays.

Data that indicate the attitude control engine firing times are shown in
figure VI-20. The P-1, A-2, and A-4 engines were fired for a short period Jjust
after MECO to correct for small pitch and roll errors caused by main engine
thrust cutoff. The small requirement for attitude control at this time indi-
cates a very smooth main engine shutdown. At MECO + 73.7 seconds, P-2 and A-1
engines fired for about 15 seconds with intermittent firing of A-2. This was
the result of a programed function to turn the vehicle 180°. The engines were
cut off when the turning rate reached a limit of 1.6 degrees per second. At
MECO + 146.7 seconds, P-1, A-3, and A-4 engines came on to stop the turning.
The start of retrothrust began at MECO + 193.5 seconds. Shortly thereafter, a
yaw-roll error was indicated by the firing of A-2, A-3, and A-4 engines. This
error continued for the duration of the retromaneuver, with constantly decreas-
ing magnitude. Since the disturbance did not exist prior to the start of blow-
down, and since the magnitude of the disturbance decreased with time, it is
apparent that it was caused by misalinement of the retrothrust vector with the
vehicle center of gravity and possibly a small amount of unbalanced impingement
forces. With the exception of the preceding disturbances, the entire retro-
maneuver was performed relatively smoothly. Prior to the flight, there was
some speculation that liquid hydrogen might freeze and partially block the cool-
down valve discharge tubes through which the hydrogen is exhausted. However,
the small requirement for the attitude control engines and the times at which
they were fired indicate that there was no appreciable blockage of the discharge
tubes.

The HoOp bottle was tanked with 109 pounds. Approximately 9 pounds were
expended in ground tests, resulting in a lift-off weight of 100 pounds. Based
on a nominal H0p flow rate of 6.18 pounds per minute for the boost pumps, the
total boost-pump regquirement was calculated to be 49 pounds. The total weight
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of Ho02 expended by the attitude control system was less than 5 pounds, based on
the indicated firing times of the attitude control engines and nominal flow
rates of 0.0194 and 0.0097 pound per second for the 3- and 1l.5-pound-thrust en-
gines, respectively. Therefore, there were approximately 46 pounds of Hy0s re-
maining in the tank at the completion of the mission.

HYDRAULIC SYSTEMS
Atlas

The booster hydraulic system performance was nominal throughout the boost
phase (fig. VI-21). Steady-state airborne hydraulic pressure levels were ob-
tained approximately 7 seconds following engine start. The 7-second time period
included accumulator charging and the gimbal flow requirements just after lift-~
off (fig. VI-22). Steady-state pressures of 3103 psia at the pump discharge and
3211 psia at the B-1 accumulator were maintained until BECO and then dropped to
zero as expected.

The sustainer hydraulic power changeover occurred in approximately 8 sec-
onds. This time period included accumulator charging, engine control valve,
and gimbal flow requirements just after lift-off (figs. VI-22 and 23). Steady-
state pressure levels of 3036 psia at the pump discharge and 3163 psia in the
vernier engine portion of the circult were maintained until BECO. Normal pres-
sures in support of gimbal flow requirements commanded by the autopilot and the
admission of guidance were observed during BECO and after booster-package jet-
tison.

An unexpected drop of approximately 500 psi at lift-off + 137 seconds with
no flow demand of any significance has been attributed to a pressure transducer
malfunction. The dropout was not reflected in any form on the sustainer-vernier
pressure trace, which is derived from the same hydraulic circuit downstream of
the pump.

Centaur

Bvaluation of the data received from the AC-6 flight shows that both the
C-1 and C-2 hydraulic systems operated properly. Engine positions as & function
of time are shown in figure VI-24. The nev rematched recirculation system
effectively started nulling both engines as MES - 7.6 seconds. Nulling rates of
1.6 degrees per second maximum and a minimum of 0.5 degree per second were
higher than those achieved on previous flights. A change in nulling rates
occurred at MES - 6.4 seconds as a result of slight vehicle rate changes im-
parted by a minor Atlas-Centaur separation disturbance. Feedback positions at
MES - 0.2 second indicate that the vehicle was pitching upward, yawing right,
and reolling counterclockwise. Vehicle rates imparted by engine start differen-
tial impulse were effectively eliminated in the allotted time between MES and
MES + 4 seconds. Guidance corrections, required after rate suppression, were
accomplished in an 8-second interval between MES + 4 and MES + 12 seconds. The
whole start transient in terms of engine gimbal was milder than any that
occurred on previous flights. The only other hydraulic demand of any signifi-
cance was made at MES + 253.8 seconds in response to a guidance input.
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The uprated recirculation system pressures just prior to MES reached values
of 127 psia for C-1 and 126 psia for C-2, as shown in figure VI-25. Main system
pressures reached and maintained steady-state values of 1112 psia for C-1 and
1116 psia for C-2. The expected drop in pressure at MES + 4 seconds with guid-
ance readmission was not noticeable.

Engine position changes needed to compensate for the transient differential
impulse during shutdown are shown in figure VI-24(b). The maximum engine posi-
tions reached were 1.6 degrees for C-1l pitch, 1.3 degrees for C-2 pitch, -2.6
degrees for C-1 yaw, and 0.7 degree for C-2 yaw. Movement to these positions
during shutdown indicates that compensation was made for vehicle downward pitch,
right yaw, and counterclockwise roll.

The recirculation system pumps were restarted by the programer and con-
tinued to function properly until the end of the retromaneuver. Engine posi-
tions during retromaneuver were basically those that existed just prior to MECO
(fig. VI-24(b)). Attitude errors in the pitch plane were sufficient to cause a
sinusoidal type response of the engines. A corresponding peak to peak displace-
ment of agpproximately 0.4 degree occurred on both engines for three cycles last-
ing 300 seconds.

Hydraulic system manifold temperatures at 1ift-off were 66° F for C-1 and
720 F for C-2, as shown in figure VI-26. The expected temperature drop through
boost phase occurred and was comparable to that observed on AC-4. At MES + O,
C-1. reached a low of 58° F and C-2 settled to 61° F. Temperature rise rates
during main pump operation were nominal. Temperatures at MECO were 178° F on
C-1 and 193° F on C-2. .Rates of temperature drop after MECO + 300 seconds were
linear at 1.7° F per minute. The temperatures at lift-off + 1500 seconds were
1220 F for C-1 manifold and 125° F for C-2 manifold.
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TABLE VI-I. - ATLAS STEADY-STATE OPERATING CONDITIONS
Parameter Time from | Nominal |Flight
lift-off, value value
sec
Booster
B-1 pump speed, rpm 100 86340 6610
B-2 pump speed, rpm 100 ap279 6494
B-1 IOz pump inlet pressure, psia 95. 6 bsg. 7 685.7
B-2 I0p pump inlet pressure, psia 95.6 bsg. 7 67.2
B-1 fuel pump inlet pressure, psia 95.86 bse, 2 53.0
B-2 fuel pump inlet pressure, psia 95.6 bsg, 2 54,9
B-1 thrust chamber pressure, psia 100 a577.5 | 578
B-2 thrust chamber pressure, psisa 100 as577.5 | 581
Gas-generator chamber pressure, psia 100 a531 541
Sustainer
Pump speed, rpm 200 210 114 9984
Fuel pump inlet pressure, psia 195 P46, 9 51.1
02 pump inlet pressure, psia 195 bal,s 42.1
102 pump inlet temperature, OF 195 b_2g4,2 | -281.5
Fuel pump discharge pressure, psia 200 fe---m--- 894
Gas-generator discharge pressure, psila 200 a7g2 791
10o injector manifold pressure, psia 200 |eeeemee-- 823
Thrust chamber pressure, psia 200 a704.2 | 696
Vernier
V-1 thrust chamber pressure, psia 200 8359 373
V-2 thrust chamber pressure, psia 200 2360 371

8Acceptance test data.
EPRO predicted value.
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TABLE VI-II. - ATLAS PERFORMANCE (DEPRO PROGRAM)&

Flight Predicted
value value
Thrust at 1ift-off, 1b
Boosters 326 765 326 622
Sustainer 56 807 56 919
Verniers, axial 1 491 1 518
Total 385 063 385 059
Thrust at BECO, 1b
Boosters 375 411 376 363
Sustainer 80 512 79 515
Verniers, axial 1 705 1 744
Total 457 628 4357 622
Thrust at SECO, 1b
Sustainer 79 760 79 250
Verniers, axial 1 704 1 744
Total 80 464 80 994
Specific impulse at lift-off, sec
Boosters 251.8 252.9
Sustainer and verniers 213.0 213.9
Total 245.1 246.0
Specific impulse at BECO, sec
Boosters 288.0 287.17
Sustainer and verniers 306. 8 304.2
Total 291.0 290.5
Specific impulse at SECO, sec
Total 306. 8 303.4
102 to fuel mixture ratio
Lift-off 2. 30 2.28
BECO 2.39 2. 34
SECO 2.54 2.55

i
8See ref. 6 for explanation of this technique.
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TABLE VI-ITI. - CENTAUR ENGINE STEADY-STATE OPERATING CONDITIONS

Paranmeter Nominal MES + 90 sec

C-1 Cc-2
LH, pump total inlet pressure, psia 35.0 34. 4 33.4
ILH> pump inlet temperature, °R 38.8 [ ------ 38. 9
LO2 pump total inlet pressure, psia 59.8 59.6 59.9
LO2 pump inlet temperature, °R 176.6 173.5 174.0
10z pump speed, rpm 11 350 11 125 11 462
LH2 turbine inlet temperature, °R 331 326.9 337.1
LH, venturi upstream pressure, psia 649 672.8 681.5
Chamber pressure, psia 300 293.5 291.1
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Figure VI-1. - C-1 engine (serie! no, 641895) flight and final acceptance test run start transient characteristics.
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Figure VI-2, - C-2 engine (serial no. 641896} flight and final acceptance test run start transient characteristics.
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LO, pump housing temperature, °R
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Figure VI-3. - AC-6 flight start transient fuel and LO2 pump conditions.
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L0y pump housing temperature, °R
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Figure VI-4, - AC-6 final acceptance test start transient fuel and L02 pump conditions.
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Figure VI-5, - Fuel pump inlet conditions near engine start, (C-2 engine temperatures
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Pressure, psia
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Sustainer hydraulic pressures, psia
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Figure VI-26. - Hydraulic manifold C-1and C-2 temperatures.
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VII. FPROPELLANT SYSTEMS

SUMMARY

The Centaur propellant systems performed satisfactorily in support of the
AC-6 flight. Additions to AC-6 were (l) a dual-element hot-wire liquid level
sensor system for controlling precise topping levels during tanking and (2) a
propellant utilization (PU) system to optimize propellant consumption. Topping
rates were easily controlled to maintain minimum ullage levels. The PU system
accurately controlled depletion of propellant quantities to within 5 pounds of
IHp at the time the liquid levels receded below the bottom of the PU probes in
the tank.

Tank pressurization and venting were successful throughout the flight, and
the vent valves controlled within specified pressure limits. The pressure rise
rate (3.73 psi/min) in the ILH2 tank was lower than expected during initial pri-
mary vent-valve lockup, T - 7 to T + 67 seconds. This was believed to be a re-
sult of cold helium purge gas leaking through the forward bulkhead seal and pos-
8ibly some GHp leakage through the vent valve. The AC-6 was tanked to a mini-
mum ullage, and the boiling on unlocking the low-pressure relief valve appears
to have resulted in about 50 pounds of LH2 entrainment.

Blowdown of the residual propellants through the engines to provide retro-
maneuver thrust was accomplished without incident. Pressure decay rates in the
LH2 and 102 tanks were in good agreement with predicted values based on condi-
tions with 50 percent of the propellants settled.

The Atlas sustainer stage operation was successfully terminated in a
planned propellant depletion mode by the fuel-depletion system. This was the
first time this system was utilized to initiate sustainer engine cutoff.

CENTAUR PROPELLANT LOADING

The AC-6 Centaur tank was the first to utilize a new propellant level in-
dicating system (PLIS) for loading propellants to proper flight levels. The
system consisted of three dual-element hot-wire liquid level sensors in the hy-
drogen tank and four dual-element hot-wire level sensors in the IOz tank, as
shown in figure VII-1l. In conjunction with the PLIS, a refined topping system
was installed to enable propellant "topping flow" rates as low as 3 gpm for fine
level control.

To assure proper liquid levels at 1lift-off (T - O), propellants were

"topped" until T - 90 seconds. The requirement at this time was that the
topping-low sensor be wet in the hydrogen tank and the topping-high sensor be
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wet in the 102 tank. This requirement was adequately met, as shown in figure

VII-2, with the 102 topping-high sensor indicating dry at T - 73.5 seconds and
the IH2 topping-low sensor going dry at T - 26 seconds. Propellant weights at
lift-off are summarized in table VII-I.

CENTAUR PROPELLANT UTTILIZATION SYSTEM
System Description

The AC-6 flight was the first test of the Centaur propellant-utilization
(PU) system that demonstrated the capability of the system to operate in a
closed-loop configuration. The system, as shown in figure VII-3, is used during
tanking to indicate propellant masses and during flight to optimize propellant
consumption. In flight, the mass of propellant remaining in each tank is sensed
by a capacitance-type probe (transducer assembly) and compared in a bridge-type
circuit. If the mass ratio of propellants (oxidizer to fuel ratio) in the tanks
at any time varies from a predetermined value (usually 5), an error signal is
sent to the proportional servopositioner that controls the 102 engine flow
valves. If the mass ratio is greater than 5, the 10, flow to the engines is
increased to return the mass ratio within the tanks to 5. If the mass ratio is
less than 5, the L02 flow to the engines is decreased. Since the sensing probes
do not extend the full length of both tanks, PU control is not effected until
approximately 90 seconds after main engine start. For this 90 seconds of engine
burn, the L0z flow-control valves are nulled (locked at a nominal flow mixture
ratio of 5).

System Performance

A1l prelaunch checks of the system were within required 1imits and speci-
fications. The PU LH2 and IO quantity readouts during tanking are shown in
figure VII-4. Again, it should be noted that the PU probes do not extend the
full length of the tanks and, therefore, do not indicate the final amount of
tanked propellants. Table VII-IT summarizes prelaunch checks of the PU system.

Inflight performance of the PU system was satisfactory. The liquid levels
reached the top of the 102 probe at MES + 89.5 seconds and the LHo probe at
MES + 95.1 seconds. The PU valves, as shown in figure VII-5, nulled by the pro-
gramer until MES + 90 seconds, were unnulled properly and immediately moved to
the LOo-rich position and remained there until MES + 193.5 seconds. During this
time (MES + 90 to MES + 193.5 sec), 228+25 pounds of excess LOz were consumed;
160 pounds of error bias, plus 68 pounds of tanking error and engine mixture
ratio error accumulated during the first 90 seconds of engine burn. The PU
valves oscillated about null from MES + 193.5 to MES + 423.6 seconds (A time =
281.1 sec). During this time, the system corrected for a -514%100 pound
steady-state 102 error; that is, the valves decreased the IOz flow so that the
engines burned at a fuel-rich mixture ratio. All these calculations have been
made with the assumption that nominal engine inlet conditions existed throughout
engine burn. At MES + 423.6 seconds, the LOZ level passed the bottom of the IOz
probe, and 2.2 seconds later, the LHp level receded below the bottom of the LHp
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probe. At this time, the flow control valves went to the LOp-rich stops and re-

mained there until MECO. Figure VII-6 shows the propellant quantities as indi-
cated by the PU probes as a function of time during engine burn.

System Accuracy

At 102 probe uncovery (level passing the bottom of the probe) 25.8 pounds
of IHy were indicated by the IHp probe (hydrogen remaining in tank above bottom
of probe). This represents the 2.2-second uncovery time difference between the
102 and LH2 probes. The error bias, which was 160 pounds of 1Oz, was effec-
tively reduced to 123 pounds as a result of a larger amount of gaseous hydrogen
than expected remaining in the tank. Therefore, at LO2 probe uncovery, 24.6
pounds of LH2 (123 1b IO2 at a ratio of 5 equals 24.6 1b IHp) indicated by the
probe. The PU system error then would be 25.8 - 24.6 = 1.2 pounds of IHo. A
conservative number for PU error would be less than 5 pounds of LH» indicated by
the IH> probe above the probe bottom at the time the ILOo level passed the bottom
of the LO2 probe.

PROPELLANT RESIDUALS AT MECO
Liquid Residuals

The LO; and LHy, residuals were calculated by using the time that the pro-
pellant levels passed the bottom of the PU probes as a reference point. The
total 102 residual was 271.1 pounds with 202.8 pounds of this being burnable LOs.
The total LH» residual was 163.2 pounds with 91.3 pounds of this being burnable
IHs. TFor calculastions of these residuals see appendix B.

Gaseous Residuals

The gaseous residuals of 83 pounds of GHz and 165 pounds of GOz were calcu-
lated by using ullage temperature and pressure data at MECO obtained from fig-
ures VII-7 and 8, respectively. The hydrogen residual calculations were made by
utilizing the temperature profile in the tank at MECO and reflect temperature
stratification in the tank. The oxygen residual was based on the three ullage
temperature measurements in the tank.

CENTAUR PROFPELLANT TANK PRESSURIZATION
Powered-Flight Phase

The 102 and IHp tank pressures were controlled throughout the AC-6 flight,
as shown in figure VII-7. It should be noted that the IHz pressure rise rate
during initial number 1 vent-valve lockup, T - 7 to T + 69 seconds, was low
(3. 73 psi/min). As a result, the number 2 vent valve did not relieve until
T + 67 seconds, only 2 seconds before the number 1 vent valve was unlocked and
tank pressure was relieved to allow pressures to remain within structural limits.
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The cause of the low pressure rise rate is believed to be twofold. A leak in
the forward station 208 seal allowed very cold helium purge gas, from between
the IHo tank and the insulation panels, to escape into the forward equipment
area and cool the forward bulkhead. Evidence of such a leak was indicated by
the low temperatures of electronic equipment in the forward bulkhead area prior
to 1lift-off. (See section VIII for equipment temperatures.) In addition, the
primary hydrogen vent valve may not have been fully seated. Photographic cov-

erage gives evidence of continued hydrogen venting from the vent fin during the
early seconds of flight.

Tank ullage temperabtures are shown in figure VII-8. The LO2 tank ullage
temperature remained essentially at saturation, indicating thermal equilibrium
in the tank throughout the flight. The LH, tank ullage temperature reflected
changes in pressure as expected. The temperature measurement, which was located
on the forward bulkhead, again indicated an abrupt temperature drop to LHp tem-
peratures at MECO, which provided evidence of LH2 spray from the boost-pump
volute bleed hitting the forward bulkhead. In addition to the ullage tempera-~
tures shown in figure VII-8, several additional temperature measurements were
made in the tank, as shown in figure VII-9 for the period of engine burn. These
measurenents were utilized to obtain a temperature profile in the tanks at MECO
10 enable accurate calculations of gaseous residuals and give some indication of

Step pressurization of the propellant tanks (burp) to provide the proper
NPSH for boost-pump start was normal. The pressure data are summarized in the
following table:

Tank Initial Final AP,
pressure, pressure, psid
psia psia
LOZ 29.5 33. 3 3.8
LH, 19.2 21.6 2.4 (l-sec spike)
20.4 1.2

Pneumatic system operation was also normal and in good agreement with
ground testing. Helium bottle pressure was 2820 psia at 1lift-off and had de-
creased to 2580 psia by T + 550 seconds. The engine controls pressure regulator
and the HoOs controls pressure regulator were 448 to 460 psig and 307 to 314
psig, respectively. The latter was slightly higher until the boost pumps were
started as a result of normal regulator lockup. Hellum consumption for the
burp prior to boost pump start was 0.292 pound.

Propellant Tank Venting
Venting of the LHz and 1O, tanks, as required to maintain a scheduled tank

pressure profile, was accomplished successfully on the AC-6 flight. The hydro-
gen vent flow rate, which was the only one monitored, was invalid because of a
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loss of pressure instrumentation at the venturi flowmeter. However, based on
known liquid levels at T - O and start of PU control, the total propellant ven-
tage prior to Centaur staging has been estimated as follows:

Propellants, 1b

IO IH

2 2
Total propellants tanked 25 521 S 278
Ground boiloff: . 26 9
LH2 = 0.45 1b/sec (T - 26 to T - 7 sec)
10, = 0.326 1b/sec (T - 73.5 to T - O sec)
Total propellants at T - O 25 495 S 269
Propellants consumption, engine chilldown 5 197 1 122

to PU probe uncovery:
10, T + 234.4 to T + 332.5 sec
IHo T + 234.4 to T + 338.5 sec
Remaining propellants and ventage at PU start 20 298 4 147
Actual propellants at PU start 20 240 4 018

Total propellants vented 58 129

The GO, vented was low as expected, but the indicated hydrogen ventage was
high. Previous flights indicated that the total hydrogen vented during this
time was about 70 to 80 pounds. This increased ventage on AC-6 (129 1b - 80 1b
= 49 1b) may be attributed to liquid entrainment during periods of tank blow-
down after vent-valve lockup periods. A sudden drop in pressure upon unlocking
the lower relief valve produces boiling, and with a very low ullage (about
13 cu ft on AC-6), liquid droplets could easily be entrained in the vent dis-
charge.

Retromaneuver Blowdown

Current separation requirements between the spacecraft and Centaur are
336 kilometers in 5 hours. To effect this separation distance, Centaur is
turned 180° to the injection velocity at T + 752.8 seconds, and a retrothrust is
applied at T + 872.8 seconds, terminating at T + 1853.8 seconds. The thrust
force is provided by venting residual hydrogen through the chilldown valves and
residual oxygen through the engine nozzles. Analysis of flight data indicated
that the spacecraft-Centaur separation distance after S5 hours was 1300 to 1600
kilometers, which is considerably in excess of the minimum separation require-
ment.

Tank pressure histories during the retromaneuver, as shown in figure VII-10
were normal, and agreed well with analytical predictions for the 50 percent lig-
uid settled case. Pressure in the IHo tank increased from MECO to start of
retroblowdown at an average rate of about 0.77 psi per minute, then showed a
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gradual decline. Pressure in the LO2 tank continued to increase at an average
rate of about 0.33 psi per minute until 87 seconds after the start of retroblow-
down before the downtrend was observed. From the shape of the tank pressure
profiles, it appeared that venting of mixed phase or trapped liquid occurred
during this period.

Tank pressures in both tanks continued to decay from T + 960 seconds to the
end of the retromaneuver at T + 1853.8 seconds. The average rate of pressure
decay was 0.96 psi per minute in the LHp tank, and 1.18 psi per minute in the
I02 tank. Tests (ref. 9) had shown that, under suitable conditions, solid hy-
drogen would form and tend to adhere to the vent duct when ILH, was exhausted to
an ambient pressure below its triple point. The tank pressure history and atti-
tude control duty cycles in this period, however, showed no apparent evidence
of any adverse effects due to solid hydrogen formation in the chilldown vent
ducts. At T + 1853.8 seconds, the blowdown valves closed, and both tanks ex-
perienced a graduel rise in pressure.

BOOSTER FUEL DEPLETION SYSTEM

The flight of AC-6 was the first Centaur mission in which the sustainer
stage flew to propellant depletion and utilized propellant depletion systems
(102 and fuel) to initiate SECO. The fuel depletion system had flown for the
first time on AC-4 in an open-loop configuration. Pressure switches, used to
detect I02 depletion, had served only as a backup for triggering engine shut-
down on all previous flights. An additional backup signal to the propellant de-
pletion scheme was provided by Centaur guidance, capable of SECO initiation at
0.7 g.

The most probable mode of shutdown, based on propellant tanking, is the de-
pletion of IL02 before fuel. This was the case experienced in the flight of
AC-6. In order to detect IOo depletion, two series-connected sustainer-engine-
fuel manifold-pressure switches are activated by a decay in fuel-manifold pres-
sure that results from a drop in IO2 pump NPSH. When both pressure switches
close, a signal is transmitted to the autopilot to initiate SECO (fig. VII-11).

In the event that fuel depletes first, detection is made by two magneto-
strictive sensors, mounted on a common probe and located in the fuel tank, with
the sensing point at station 1194.27 (fig. VII-12). Two series-connected sensor
controller units located in the B-1 pod receive the "dry" feedback signals from
the sensors and, in turn, relay a 28-volt signal to the autopilot. Both sensors
must indicate "dry" before a shutdown signal can be transmitted.

In addition to the functional system just described, there is a duplicate
and independent evaluation system with similar sensors located in the fuel tank,
with the sensing fuel level at station 1168.50. These sensors are positioned
sufficiently high in the tank to be uncovered on all flights (evaluation system
will be flown through AC-8 only). Outputs from this system are transmitted to
the te%emetry system alone and are not utilized for any command functions (fig.
VII-13).

The fuel-depletion system operated without anomalies on AC-6 as indicated
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by telemetry measurements of each of the four sensor controller relays. The
data were quite similar to those obtained from the AC-4 flight. The evaluation
sensors indicated approximately four uncover-cover cycles during a 2.2-second
period commencing at T + 208.5 seconds (fig. VII-14). Slosh oscillations of
this nature were expected because of the location of the probe near the tank
wall with exposure to undampened fuel movement. At T + 210.7 seconds, the eval-
nation sensors remained dry until after retrorocket firing. At T + 237.2 and

T + 241.8 seconds, sensor A indicated wetting for l/2-second periods as a result
of fuel sloshing.

The functional sensors remained covered with fuel until 2.5 seconds follow-
ing SECO (T + 236.6 sec). At this time the sensors were uncovered due to the
forward movement of the fuel after retrorocket firing. Sensor A gave three
momentary wet signals at T + 240.6 and T + 246.1 seconds (2 cycles) before re-
maining dry, indicating continued fuel movement. Had not the engines sensed IO,
depletion, there would have been 2.5 seconds additional burn time remaining un-
til the fuel-depletion system would have triggered shutdown.
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TABLE VII-I.

- AC-6 PROPELLANT LOADING

Sensor required to be wet at T - 90 sec

Sensor station number
Volume® at sensor, cu ft

Ullage volume at sensor, cu ft
LH> topping-low sensor dry at sec
LO0o2 topping-high sensor dry at sec

Ullage pressure, psia
Densityb, 1b/cu ft

Weight in tank at time sensor goes dry, 1b
IH2 boiloff to vent-valve lock at T - 7 sec, 1lb

I02 boiloff to T - O sec, 1b

Ullage volume at 1ift-off, cu ft

Weight at lift-off, 1b

Propellant
Topping low | Topping high
174.99 373.16
1256.69 370. 94

11.22 6.58
T -26 | ~-==em=-
------- T - 73.5
21.8 30.5
4.2 68.8
5278 25 521

9 | adceoao-
------- 26
13.5 6.9
5269 25 495

olumes include 1.85 cu £t 102 and 2.53 cu £t IHp for lines from boost pumps
to turbopump inlet valves.

bDensities are taken from curves for vapor pressure against density from

ref. 10.
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TABLE VII-II. - PROPELLANT UTILIZATION SYSTEM

PREFLIGHT CHECKS

Time, PU valve slew rates, deg/sec
min

c -1 Cc -2 Limits

T - 44 9. 20 9. 35 6 to 12
T-9 9.50 9.20 6 to 12

PU valve crossover points (time of check,
T - 59 min)

The following equation must be satisfied:

5 IHy - I0p = 160300 1b

For check:
IHo = 2 880
I02 = 14 045
therefore

S IHp - 02 = 355 1b

Full quantity check (time = T - 52 min)

Propellant | Quantity, | Requirement,
1b 1b
IH, 3 860 3 8801200
102 19 425 19 400%1000




88

L0,
standpipe-----X""

boi loff

Topping high

{100.2 percent)

CD-8320

Figure VII-1. Centaur propellant level indicating system.

l—-{]}—— Controt units
(transfer room)
LH,
(Mwo.2 oF (I
v Topping low (99.8 percent) 13 9.8 100.2 17
Y M %800
Loy overfill % Topping high % [T]
(OF) sensor-, % (100.2 percent Readout panel lights
AR (block house)
A A A A A A A A AN NI AA A A A A




Propel- Percent
lant full

Close L0, Close LH,

Wet _— fitl and fill and
H, 100. 2 b tSensor bllppl@ l ” ||| " [[ drain valve y ‘ drain vaive
. Dryj——— —— -

T- 52 min 19 sec
Wet— —\r
Hy w8 ] M |
Y™ T 52 min 41 sec
% Wetr— —N—
H, .0 Dry
Wet T-55min 10 sec
etr— . PO
10, overfill First wet'lndlcatlons
bry N
L ——— N
Lo 100. 2 Wet [ e Sensor blipping wet to dry _4"-“—“____
2 Dry ————[, e bttt et
T - 39 min 25 sec
0 .8 Wetl— —N\—
L0y . Dry I
T- 41 min 0 sec
Wet~ N
L0, 95.0 or |
y T~ 50 min 17 sec T-%l
] | | l | 1 | | |
-300 -280 -2 -20 -l60 -120 -8 -8
Time, sec

Figure VII-2 - Centaur propellant level indicating system operation,

Electrical
harness—~

LH, probe
transducer
assembly—-11

Inertia tube—.
N

2

LO, probe
transducer

assembly —

y ~Mixture ratio
Electronic B valve (LO,)
package —~

To umbiticat ,*
disconnect~"

. l’
Inertia tube ~ ~LProportional

servopositioner

Figure VII-3, - Centaur propellant utilization system sche-
matic.

YU

89




90

Propellant utilization valve angle, deg

410?200
/
!
2 3 o 16 B ! /
2 = 21| |/
g =
S a- s 1 .
: | < / ]
g | g / /
2 - 5 8 /
2 : / 1.4 LHy
: | 2 [
S g~ 4 K
Lift-off~
Ol (I‘ -
100 -9 -80 -70 -60 -50 -40 -30 -2 -10 0
Time prior to lift-off, min
Figure VII- 4 - Propeliant utilization liquid-oxyaen and liquid-hydrogen guantities.
£ .
? Fuel rich ] I l l n fo.
. o C - 2 engine valve N P\ﬂ Jo ;)é) 1
| \ [ 1P
LOs rich
AR \ /
?M55T+242-859C r Unuli valves; begin
gl PU control; T +333 sec
8 1 T 1
| Valves nulled: PU
i not controlling .
4otFuel rich | Unull valves; begin
MES T + 242, 8 sec PU control; T +333 sec 0
AL o A AR
C - 1 engine valve \ j SARYRY
L0, rich —
- 1 1
220 240 260 280 300 320 340 360 380 400 420 440
(a) Time, 220 to 460 seconds.
w__Q Fuel }ich
4 v
0 Yol .4 alRoh hof oA 3
Y TRAR e
" L0, rich ~1" - 2 engine valve
MECO b—‘h
-8 T +679 sec
&0
C - 1 engine valve
“ Fuel rich
Re) (D On L 4 3/0\.
B3 P8 [ algo/H N / /]
TO (0] <y
% L0, rich
460 480 500 520 540 560 580 600 620 640 660 680
Flight time, sec

(b) Time, 460 to 680 seconds.

Figure VII-5. - Propellant utilization valve angle as function of time.

JrvRE




Liquid-oxygen quantities sensed by probes, Ib

243103

8
I

T

12—

Liquid-hydrogen quantities sensed by probes, b

6'(103 — T T T
* Unnull valves T +333 sec
—PU not |
controlling — T PU control
5
?\
LO2 probe
4 uncovery \O\‘O
Nl
LH, probe
3 uncovery \a\ \()\h
LHZ ,’k V\D\("-LOZ
2 u\A
\-ﬁ\n\( MECO
T+ 67.9 sec
1 End *
b Sensing
0
250 300 350 400 450 500 550 600 650 700

Flight time, sec

Figure VII-6. - Propellant quantities from propellant-utilization probes.

91



92

Pressure, psia

e

34 T T T
L0, ullage pressure 1
" y N _
A
~Number 2 vent valve relieved Lock LO valve
26 //’
4 8
/ 3,73 psilmin LH ullage pressure
22 ]
\
N~ 4 | = -
—p =T _' ‘\
18 A A AL A
14 BECO Burp
4
A Number 1 vent-vaive lock MES
A Number 1 vent-valve unlock
10 I N A
-4 0 i} 80 120 160 200 200 280 320 360

(a) Time, ~40 to 360 seconds. Pressure varied duri

ng period from insulation-panel jettison (T +172.7 sec) to SECO

(T +234 8 sec) at approximately 1 cps. The dashed lines indicate the maximum excursions: most were less.
V== L0, ulla
—— ] 2 ullage pressure
\\_\
26/ \\
22
I pet LHy ullage pressure MECO
18 i s
—— [
—
14
360 400 40 430 520 560 600 640 680 70

Flight time, sec
(b) Time, 360 to 720 seconds.
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Figure VII-11. - Booster fuel depletion system circuit.
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VIII. ENVIRONMENTAI, TEMPERATURES

SUMMARY

The AC-6 environmental temperature profiles during flight were generally
satisfactory, indicating adequate thermal control. Limited use of Thermolag
provided additional protection for the nose-fairing and insulation panels, and
the maximum skin temperatures due to aerodynamic heating were in good agreement
with predicted values. Maximum measured flight temperatures were 1450° F at the
nose-cap stagnation point and 826° F on the leading edge of the hydrogen vent
stack. The high indicated nose-cap temperatures, however, were erroneous due to
a poor thermocouple installation.

Internal temperatures in the payload compartment and the Centaur thrust
section were nominal. In the Centaur forward equipment area some unusually low
temperatures were experienced, particularly at the number 1 telemetry package,
which had a skin temperature of -16° F or lower at lift-off. These low temper-
atures indicated the possibility of a cold helium gas leak through the station
208 seal.

EXTERNAL THERMAL: ENVIRONMENT NOSE-FAIRTNG AND INSULATTON PANELS

Measured external temperatures on the nose~-fairing and insulation panels
are shown in figures VIII-1 to 4. Table VIII-I also compares maximum measured
temperatures with the predicted temperatures. The maximum measured temperature
on the phenolic nose cap was 1450° F compared with a preflight prediction of
8500 F. However, the nose-cap measurements were not valid because of a poor
thermocouple installation. The thermocouples in the nose cap had been potted
with a low-temperature epoxy that pyrolized at about 400° F. Consequently, the
epoxy charred, insulated the thermocouple from the nose cap, and the small iso-
lated mass sensed the higher response to aerodynamic heating as evidenced by the
higher temperatures. The thermocouple did not accurately reflect the nose-cap
temperature. This theory has been substantisted by postflight tests.

The maximum temperature experienced as a result of aerodynamic heating on
the leading edge of the hydrogen vent stack was 826° F at a point 18 inches out-
board from the nose fairing. This thermocouple installation was integral with
the vent stack and was not compromised as in the case of the nose cap. The max-
imum temperature was less than the predicted 1025° F.

Heating effects on the conical surface of the nosecone were much less and
did not exceed 265° F. These temperatures were well below the critical bond
(glue) line temperature of 5000 F. The effect of the Thermolag used to protect
select areas can be noted by comparing figures VIII-2(a) and (b). Temperatures
measured under the Thermolag at station 72 were approximately 80° F less than
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those without Thermolag. Measured temperatures on the insulation panels along
the positive x-axis without Thermolag indicated a peak value of approximately
3000 F.

INTERNAL TEMPERATURE CONTROL
Payload Compartment

The payload compartment environmental control and temperature instrumenta-
tion are shown in figure VIII-5. The temperature histories of the payload com-
partment are shown in figure VIII-6. All the temperatures at lift-off gave
assurance that a satisfactory thermal environment was maintained throughout the
countdown. The Surveyor ambient temperature (CY7T), which was 85° F at lift-off,
indicated that the environment in the vicinity of the retromotor was sufficient
to meet the requirement of 85°+5C F at lift-off. The temperatures of the space-
craft separation latches, which have a lower temperature limit of 35° F, varied
from 73° to 85° F at lift-off.

An attempt was made on this flight to determine the feasibility of moni-
toring and controlling the conditioning gas temperature at the ground side of
the duct disconnect while maintaining the temperature of the gas within the
lower airborne duct at 859450 F. Figure VIII-7 shows a comparison of these
temperatures and indicates that a temperature setting of 83° F on the ground
controlling sensor would have met the 859+45° F requirement. These data will be

verified by repeating this procedure on future vehicles.

Interstage Adapter

Extensive temperature instrumentation was installed on the AC-6 interstage
adapter to measure the thermal environment. This instrumentation is shown in
figure VIII-8. Table VIII-IT is a summary of maximum measured temperatures on
the AC-6 interstage adapter. Figure VIII-9 is a typical temperature history of
the interstage skin.

INTERNAL THERMAL, ENVIRONMENT CENTAUR ELECTRONICS COMPARTMENT

Temperatures in the forward equipment area are shown in figures VIII-1O
and 11. It can be noted from the thermal mapping of figure VIII-11 that some of
the components experienced abnormally low temperatures at lift-off. In particu-
lar, the temperature measurement on telemetry package number 1 went off scale at
-16° F. These telemetry units have been tested over the range of 20° to 1100 F,
but the maximum or minimum allowable operating temperatures are not known. A
summary of the critical measurements 1s given in the following table:
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Centaur electronics compartment temperature survey
Equipment Lift-off Allowable
temperature, range,
op Op
Telemetry package number 1| Below -16 | ==---cee=o
Guidance platform 59 30 to 130
Autopilot servoamplifier 33 10 to 130
C-band transponder 39 -35 to 160
Inverter 68 200(max)

Difficulties with the cold temperatures in the forward compartment were
experienced during the quad tanking test and the first launch attempt. Inspec-
tion revealed a leak in the forward station 208 seal that allowed cold helium
purge gas from between the insulation panels and the tank to leak into the area
and cool the components. An attempt was made to repair the seal, but it appears
that the failure recurred.

Centaur Thrust Section

Data from the Centaur thrust section indicated adequate thermal control.
The HpOp manifold temperature of 80° F at lift-off was below the 120° F maximum
allowable. The propellant-utilization electronics package skin temperature of
70° F was well within the 20° to 120° F range allowed.
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TABLE VIII-II.

DN

- INTERSTAGE ADAPTER MAXIMUM TEMPERATURES

Measurement | Station | Quadrant Measured Predicted

Tempera- | Time, | Tempera- | Time,

ture, sec ture, sec

op OF

AA224T 444 I 116 127 180 120
AA225T 465 I 140 120 176 126
AAZ226T 484 I 154 130 175 127
AA227T 499 I 152 130 170 133
AA244T 418 ITI 164 117 114 135
AABBIT 430 I 180 127 183 120
AABT7OT 450 I 220 120 180 120
AABT1T 450 1T 135 130 180 120
AAGT72T 461 11 130 137 180 120
AABT3T 490 II 110 120 169 133
AABT74T 510 IT 105 120 215 170
AABTST 419 IT 230 126 290 142
AABT76T 422 Iv 150 120 188 160
AABTTT 503 Iv 120 160 230 170
AA814T 507 IIT 250 130 290 142
AAB21T 535 -y-axis 262 130 2390 142
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IX. VEHICLE STRUCTURES AND SEPARATION SYSTEMS

SUMMARY

The structural integrity was demonstrated, and all mission objectives of
structural significance were achieved on the AC-6 flight. The peak longitudinal
load factor experienced during the flight was 5.7 g's at BECO. Aerodynamic drag
loads peaked during transonic flight as expected. Bending loads induced by
wind shears and gusts on this flight were small. The peak bending moment
occurred at T + 82 seconds at station 812 and attained a value of 1.79x10® inch-
pounds.

Intimate contact was maintained between the Centaur LHz tank and the insu-
lation panels until panel separation. A minimum positive differential pressure
of 10.7 psi across the Atlas intermediate bulkhead was experienced during
launch. Interstage adapter panel excitation could not be evaluated due to the
loss of the accelerometer on the panel skin.

The separation systems functioned properly within the established preflight
limits, and all the separations were accomplished successfully. A tumbling rate
of 1.82 degrees per second was encountered on the spacecraft subsequent to its
separation from the Centaur stage. This compares with an allowable value of
3.00 degrees per second.

FLIGHT LOADS
Longitudinal Loads

There are two sources of longitudinal loads on flight vehicles: one is the
inertial load resulting from axial acceleration, and the other is a result of
aerodynamic drag forces. Vehicle axial acceleration is known both from onboard
accelerometers and from a knowledge of total engine thrust. The inertial loads
can then be calculated from known mass distribution. For this flight, the
total axial load and drag load history through atmospheric flight was calculated
from strain gage data (station 547) and compared with analytical values based on
wind-tunnel drag coefficient data. This comparison is shown in figure IX-1. It
can be seen that the measured and calculated values agree quite well except at
approximately T + 60 seconds (Mach 1) and after T + 104 seconds. This was at-
tributed to the fact that the strain gage data were of poor quality and diffi-
cult to interpret accurately.

Vehicle Bending Moments

Though the Atlas-Centaur vehicle is launch restricted from inflight winds,
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these winds during the month of August are usually very mild. The launch avail- .
ability during this month was estimated to be 100 percent. This was the case §
on the AC-6 launch opportunity, as was shown both by preflight Rawinsonde runs
and by measured (strain gage and angle of attack) bending moment data. All
bending loads were well within the vehicle limit capability.

A comparison of predicted and actual bending loads encountered on this {
flight is shown in figure IX-2. The predicted range was based on T - 2 hours
(0611 EST) Rawinsonde run and +30(1 - cos)/2 feet-per-second gust criteria
loads. The measured bending moments are based on the flight angle-of-attack
data. The bending moments were calculated in each case at station 812, which
is the station of peak loading. The maximum bending moment occurred at T + 82
seconds, attaining a value of 1.79x106 inch-pounds. This is within the limit
allowable of 5. 6x10° inch-pounds at this station.

There were four strain gages mounted on the interstage adapter at station
547. One each of these gages was located on the principal axes. As previously
mentioned, the data obtained from these gages were of poor quality. Further,
because of the low bending moment amplitudes encountered on this flight, the
relative magnitude of the errors resulting from the poor quality data could be
sizeable. A comparison between the bending moment history calculated from
strain gage responses, angle-of-attack data, and two Rawinsonde runs is shown
in figure IX-3. The Rawinsonde balloons were launched at 0611 EST and 0940 EST,
the latter approximately 10 minutes after vehicle lift-off. It is seen that
the bending loads obtained from these various sources are in substantial agree-
ment, leading to increased confidence in preflight analytical procedures.

The measured angle-of-attack histories in the pitch and yaw planes are shown
in figures IX-4 and 5. In each case they are compared with calculated angles of
attack based on the two previously mentioned Rawinsonde runs. It is seen that,
in general, the trends are in agreement. The apparent divergence between mea-
sured and calculated values in the pitch plane could be a result of the rela-
tively low angles of attack encountered on this flight. It is felt that, in a
more severe wind environment, the agreement would be better. Comparison of the
two Rawinsonde runs (figs. IX-4 and 5) gives an indication of the variability of
winds aloft. As has been evidenced on past flights, the time dependence of ‘
these winds is relatively minor, particularly in the time domain of interest in
establishing launch vehicle loads environment.

Gust Bending Moments

A1 previous Atlas-Centaur vehicles have been launched into mild wind en-
vironments, and the AC-6 flight was no exception. The gust loads encountered
(with the exception of AC-2) have also been very small. These loads are moni-
tored by the high-frequency strain measurements at station 547 on the inter-
stage. A review of these high-frequency strain responses showed a maximum
strain increment of 20 microinches per inch at T + 78 seconds, which is equiva-
lent to a gust bending moment of 0. 145x106 inch-pounds. This bending moment
increment represents a gust of approximately 4 feet per second. It is apparent
that the gusts encountered on this flight were well below the design criteria
of 30 feet per second.
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PAYT.OAD ADAPTER LOADS

There are three strain gages mounted on the payload adapter longerons di-
rectly aft of the separation latch points. Data from these gages indicate only
compression loads in the adapter from launch to T + 700 seconds, at which time
the vehicle went out of range of receiving stations at Antigua. The history of
the adapter loads through T + 700 seconds, as calculated from the strain gages,
is shown in figure IX-6. The loads increase steadily from launch to BECO
attaining a peak value of 4000 pounds per latch point. There are subsequent
lesser compression load discontinuities at SECO and MECO. From known values of
payload weight, a peak longitudinal load factor of 5.78 g's can be calculated at
BECO. At this time, measured axial acceleration showed a value of approximately
5.7 g's, which is within the accuracy of the strain gage data.

Payload adapter strain gage data from the AC-6 flight at the time of launch
have been expanded and indicate the following results:

(1) At T + 0.78 second, a bending moment of 80 000 inch-pounds occurred in
the payload adapter at station 143. This is equivalent to a 1l.2-g lateral load
factor shown in figure IX-7.

(2) Oscillation of the payload from T + 0.6 to about T + 1.1 seconds had a
frequency of about 10 cps.

(3) The relatively high bending (twice that encountered on AC-4 during
launch) may have been a result of a dynamic load from the launcher kick struts
that give a third kick at 0.5 to 0.6 second after lift-off.

(4) The design load factors for this time of flight are 1.95 g's lateral
and 1.8 g's longitudinal. The flight load factors are within these limits.

Insulation Panel Hoop Tension Loads

The Fiberglas honeycomb LH2 tank insulation panels are bolted to each other
along four longitudinal seams and to the Centaur tank at station 412. At
T + 171.9 seconds, the flexible linear-shaped-charge severence system was acti-
vated, and the panels were severed free from the vehicle. To preclude the pos-
sibility of panel flutter during the flight, the panels were installed on the
tank with a pretension (hoop) load. This pretension load ensures intimate con-
tact between the panels and the tank throughout the flight and further provides
a built-in spring to assist in panel separation and jettison.

From a consideration of nominal preduction tolerances, temperatures, and
tank internal pressure, it was estimated analytically that a panel hoop load of
approximately 82 pounds per inch would be attained at launch. Landline strain
gage data recorded during the quad tanking test revealed that the panel hoop
load varied between 71 and 82 pounds per inch over the panel length at T + O
second, indicating that approximately nominal pretension conditions were at-
tained in the panels on this flight. Continuous strain gage data through the
tanking test showed a constant hoop load. A return of all gage readings to the
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ambient hoop locad levels during detanking indicated that the structural integ-
rity of the panels was maintained throughout the tanking process.

During flight, the hoop load in the panels varied because of changes in
tank internal pressure and panel temperature. Based on this analysis, the max-
imum value attained during the flight was 115 pounds per inch at T + 70 seconds.
This compares with an allowable hoop load in excess of 206 pounds per inch. It
may, therefore, be concluded that the insulation panels were structurally intact
throughout the flight. A history of the predicted range and the actual panel
hoop loads is shown in figure IX-8.

Interstage Adapter Differential Pressure Environment

The AC-6 interstage adapter was the first of the operational lightweight
adapters to be test flown. The operational adapter is approximately 400 pounds
lighter than those flown on AC-4 and AC-5. This weight reduction was accom-
plished by a reduction in area of both stringers and frames, while the basic
skin gage remained unchanged at 0.032 inch. The skin panel size of the AC-6
adapter is approximately 4.5 by 13.5 inches compared with 8.5 by 14.5 inches
used on the previous adapters.

Differential pressure gages located in a vertical line at the negative
y-axis of the adapter skin recorded a maximum crushing pressure of 2.1 pounds
per square inch, which was well within the structural allowable of 3.5 pounds
per square inch. The interstage adapter was subjected to a crushing pressure
environment throughout most of the atmospheric fiight as expected. Pressure
data are shown in figure IX-9.

Centaur Propellant Tank Pressures

Recorded pressures in the Centaur LOs and IH2 tanks were normal throughout
suborbital flight as was the differential pressure across the intermediate bulk-
head. Detailed plots of the variation of pressure as a function of time are
shown in figure VII-7. The pressure curves fall well within the structural
allowables of 25 psig for the IHo tank and 42 psig for the IOz tank throughout
the flight.

Atlas Intermediate Bulkhead Differential Pressure

The Atlas LO, tank ullage pressure programing system, incorporated to
maintain sufficient bulkhead differential pressure during launch transient with
165K booster engines, was effective. It was designed to reduce Atlas 102 tank
pressure approximately 5 psi for the first 20 seconds of flight. A satisfactory
differential pressure across the intermediate bulkhead of 10.7 to 13.6 psi was
maintained for this period of time. At T + 20 seconds, the return to full
flight pressure in the L02 tank was initiated by the programer and completed
approximately 3 seconds later.

A minimum value of 7.8 psi differential pressure across the bulkhead was

114 FU




dessammne

experienced at T + 92 seconds. The maximum value of 25.8 psi occurred inme-
diately following BECO at T + 144 seconds. Though the upper and lower differ-
ential pressure limits have not been clearly established, a minimum value of

2.0 psi was considered desirable. The range of differential pressures encoun-
tered on the AC-6 flight was compatible with previous flight experience. Dif-
ferential pressure, 102, and fuel tank ullage pressure histories for this flight
are shown in figure IX-10.

SEPARATION SYSTEMS

To optimize the payload, several structural elements were jettisoned dur-
ing powered flight. In chronological order these were as follows:

(1) Booster-package jettison

(2) Centaur insulation-panel jettison
(3) Nose-fairing jettison

(4) Atlas-Centaur separation

(5) Centaur-Surveyor separation

The booster-package jettison was fully developed during the Atlas research and
development program, and no problems have been encountered with this system on
any of the Atlas-Centaur flights. On the AC-6 flight, booster-package Jettison
was successfully accomplished at T + 144.9 seconds. The insulation-panel jet-
tison and nose-fairing and Atlas-Centaur separations have been demonstrated on
previous flights. Centaur-Surveyor separation was the only one to be demon-
strated for the first time on the AC-6 flight. The performance of each of these
systems (except booster-package separation) on this flight is given in the dis-
cussion that follows.

Insulation-Panel Separation

Four breakwires were located on the insulation-panel jettison hinges to
record panel separation. These breakwires provided an "on-off" type of measure-
ment. A review of these measurements reveals that all the panels were jetti-
soned simultaneously at T + 171.9 seconds. This conclusion can be verified by
noting the cessation of all insulation-panel-instrumentation data at this time.
A second verification of panel separation can be deduced from the tank hoop
strain increase, which also occurred at this time. This increase indicates
that the hoop stress relief provided by the panels had been removed showing in-
timate contact between the panels and the Centaur tank.

This successful separation serves to demonstrate the capability of the
shaped-charge system to withstand repeated cryogenic cycling, particularly in
the area of station 219 where temperatures of -320~ F are encountered. The AC-6
linear-shaped-charge-separation hardware experienced one partial Centaur tanking
and one full cryogenic abort without degradation of its pyrotechnic components.
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On previous vehicles, aborts had been followed by a complete replacement of the
pyrotechnic system hardware. Confidence in the abort capability of the system
was based on the following preflight test program:

(1) A series of cryogenic unlatch tests simulating flight sborts and rain

(2) A system qualification test program consisting of 38 successive, suc-
cesful-flight-type hardware "breadboard" tests, subjecting all test
hardware to the extreme limits of vibration, humidity, cryogenic and
elevated temperatures, vacuum conditions, and flight aborts

The recovery and thorough inspection of the AC-6 wiring tunnel panel gave
further indication that the insulation panels successfully separated and jet-
tisoned from the vehicle. This panel, recovered by a U.S. Navy destroyer at
21°21' north lattitude and 71°17' west longitude (near Grand Turk Island in the
Caribbean), was thoroughly inspected by cognizant GD/C and NASA engineers and
found to be in reasonable condition considering the impact loads it obviously
sustained during reentry and on contact with the water. The panel was intact
with the exception of one missing hinge, one aft corner of the panel, and the
"bolt-on" boost-pump fairing. The inside surface of the panel showed some
local delamination of the skin. Charring of the detonator fairing and shaped-
charge retainer indicates that the panel was in an aft end first attitude during
reentry. Charring of the fracture surfaces indicates that the aft corner broke
off prior to or during reentry.

Nose-Fairing Separation

Separation of the nose fairing was signaled by the linear-motion indicator
connecting the fairing halves to the spacecraft mast at T + 196.49 seconds.
The approximately 7-inch travel of these potentiometers was accomplished in
0.04 second. No excessive vibrations were observed on the accelerometers at
this tinme.

The thrustor bottle compartment pressure dropped from 1l4.7 psia at launch
to flight vacuum prior to nose-fairing Jjettison. At nose-fairing Jjettison
there was a pressure peak of agbout 3 psi due to thrustor bottle pressure. This
peak is slightly less than pressures developed during the Lewis Research Center
Space Power Chamber tests of the nose fairing. Though this measurement may be
somewhat inaccurate because of the 6-cycle-per-second maximum response of the
transducer, it does indicate the pressure was within acceptable limits.

Atlas-Centaur Separation

The stage-separation process was initiated by the linear-shaped-charge
firing at T + 236.20 seconds which severed the interstage adapter at station 413.
The retrorockets fired at approximately T + 236.3 seconds to decelerate the
Atlas. Acceleration data indicated that all eight rockets ignited.

Information obtained from rate gyros indicated that the Centaur did not
rotate about its center of gravity appreciably during the separation process
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(less than 0.05 deg). The rate and displacement gyros indicated that the Atlas
rotated about its yaw axis approximately 0.27 degree at the time it cleared the
Centaur. The predicted yaw rotation would result in a lateral motion of

2.3 inches at station 413 after 9 feet of axial motion relative to the Centaur.
The observed motion due to rotation was 2.7 inches.

The gyros also indicated that the Atlas rotated somewhat about its pitch
axis, but to a greater degree than is normally experienced. The departure
noted from the norm appears to lie in a residual turning rate seen in the Atlas
prior to separation. The Atlas was displaced in a negative direction prior to
SECO and was initiating a corrective pitch when SECO occurred. The resulting
positive pitch motion was not nulled out as the neutral position was passed
after the engine was shut down, but continued into the separation interval.
Therefore, the interstage adapter and the Centaur were moving together at the
time of shaped-charge firing, and there was a vertical motion of the Centaur
that moved it with the Atlas rotation, tending to prevent interference. By
considering the change in the Atlas angular rate during staging, it appears that
the clearance between the vehicles was reduced by 0.3 inch (out of a nominal
15 in. ) toward the positive y-direction, which still leaves approximately 14.7
inches clearance. The predicted vertical motion at station 413 after 9 feet of
longitudinal travel is -2.7 inches.

Spacecraft Separation System

Separation latches. - The separation latches at the Centaur Surveyor inter-
face were designed to hold the spacecraft rigidly to the payload adapter and to
provide the impulse during spacecraft separation. A cross-sectional view of
the latch assembly and strain gage location is shown in figure IX-11. Not shown
are the springs that provide the separation impulse. The separation latches are
preloaded in tension to eliminate relative motion between the spacecraft and
spacecraft adapter. As seen in figure IX-12, all three latches maintained the
preload until spacecraft separation. The initial preload in all the latches
was set at 2400 pounds before launch. Two of the gages drifted away from their
nominal value prior to lift-off. This is thought to be zero shift in the strain
gage since there is no known mechanism by which this prelocad could be relieved
. during the countdown.

Variations in preload during the flight were all less than 300 pounds from
their prelaunch value. This level of variation does not affect the functional
performance of the latch mechanism. At spacecraft separation, data from the
gages showed the expected sudden release of the preload, indicating that the
latch pin-pullers functioned successfully. Data from three deflection gages,
one on each of the latch springs, also confirms a successful separation. Anal-
ysis of the spacecraft tip-off rate induced by the latch springs is discussed
in the following section.

Spacecraft separation. - Analysis of the variation of signal strength from
the S-band transponder revealed a tumbling rate of 1.8 degrees per second of the
Surveyor spacecraft after separation from Centaur. A check of the Surveyor
polar signal strength patterns for the omnidirectional antenna reveals that the
frequency rate of tumbling is the same as the frequency of signal strength.
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Linear potentiometers are located at each of the three points where the
spacecraft is locked to the payload adapter to measure the position of each of
the attachment points with relation to the spacecraft. Figure IX-13 shows the
location of these potentiometers and a time record of their output. These data
show that initiation of separation at all three points is within 5 milliseconds,
but that the potentiometers located on the positive y-axis (CY2D) reached full
scale 90 milliseconds after the other two potentiometers. Tnese potentiometers
indicated that a positive pitch rate existed at separation, and this fact agrees
with the tumbling rate based on S-band signal variation.

Each of the three latches holding the Surveyor to the Centaur payload adap-
ter has two sets of springs tending to separate Centaur and the spacecraft. The
stronger set of these springs provides force for separation, while the weaker
set of springs is used to make the potentiometer follow the motion of the space-
craft as well as to impart a small force to the separation. Calculations by
analog computer show that, if all the force derived from the spring of poten-
tiometer CY2D were removed from the system, the tumbling rate of Surveyor would
only be 0.85 degree per second. This calculated rate includes the initial tum-
bling rate before separation of the combined Centaur-Surveyor, which was deter-
mined from the pitch and yaw rate gyros as

Yaw rate = -0.244 deg/sec
Pitch rate = 0.12 deg/sec
From this calculation, indications are that a higher unbalanced force was
necessary to obtain the l.8-degree-per-second tumbling rate that existed and
that there was a high probability of a partial "hang-up" of one of the main

separation springs. Also noted was that one extensiometer travel was only about
90 percent as much as the other two.
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X. VEHICLE DYNAMICS

SUMMARY

Longitudinal modal excitations and lateral payload excitation were high at
lift-off for the AC-6 flight. The vehicle-flight-vibration environment as well
as the lateral modal excitation were similar to previous flights. At SECO, an
engine shutdown pressure oscillation caused a 90-cps longitudinal vibration un-
Observed on previous flights.

MODAL, DYNAMICS

Longitudinal excitations were observed approximately at the same times as
in previous flights, as is shown in figure X-1. Lift-off perturbations result-
ing from launcher release and from Atlas LO2 pressurization, as shown on z-axis
accelerometers, were 0.47 g single amplitude around a 1.25-g centerline with a
frequency of 7 cps. This amplitude was approximately three times greater than
that cbserved on the AC-2, AC-3, and AC-4 flights, but about the same as that
on the AC-5 launch. The peak disturbance occurred at about 0.2 second after
2-inch rise. At this time, struts bearing on the base of the Atlas vehicle
were raised by the vehicle motion which caused the launcher holddown arms to ro-
tate. Another longitudinal acceleration peak observed at 0.6 second after
2-inch rise had a single amplitude of 0.4 g (around a 1.25-g centerline) with a
frequency of 7.0 cps. At the same time, large disturbances were indicated by
the roll-rate gyro, displacement gyro, Surveyor separation-plane y-axis accel-
erometer, and Surveyor mast tip y-axis accelerometer. The roll signals indi-
cated that, up to 0.6 second, the vehicle had rolled 0.16° whereupon it snapped
back to 0° in less than 0.0l second. The Surveyor separation-plane acceler-
ometer signals indicated a single amplitude of 0.80 g about a 0-g centerline,
and the Surveyor mast tip accelerometer indicated a single amplitude of 4.0 g's
about a O-g centerline. Specifications for the Surveyor allows a 1.25-g single-
amplitude vibration at the Surveyor-Centaur separation plane.

Surveyor displacement potentiometers measuring relative motion between the
mast tip and the nose fairing showed a single-amplitude displacement of 0.48
inch at this time. These disturbances (at 0.6 sec) occurred at approximately
22 inches of vehicle rise and coincided with a load peak measured on the
Jlauncher kick strut at the same rise during tests conducted before this flight.

"Pogo" type oscillations occurred slightly earlier in the AC-6 than in the
AC-4 flight and had a maximum single amplitude of 0.16 g about a centerline
varying from 2.0 to 5.4 g's, as shown in figure X-1. The frequency for "pogo"
was 12 cps. An engine cutoff transient was observed at BECO on z-axis accel-
erometers with a single amplitude of 0.7 g around a l.28-g centerline and a
frequency of 70 cps. This amplitude was approximately half that noted on pre-




ceding flights. Unlike previous flights, the AC-6 flight also had longitudinal
oscillations caused by an engine cutoff transient at SECO detected on z-axis
accelerometers (one located at station 1057 and the other at station 450 on the
interstage adapter) that indicated a single amplitude of 5.3 g's about a 1.6-g
centerline with a frequency of 90 cps. At the same time, a y-axis accelerometer
and a tangential accelerometer on Surveyor were excited at the same 90-cps fre-
quency. The y-axis accelerometer (on spacecraft mast tip) had a single ampli-
tude of 0.30 g around a O-g centerline, and the tangential accelerometer had a
single amplitude of 0.35 g about a O-g centerline. Again these disturbances
did not exceed specifications for the Surveyor vehicle.

Lateral bending mode deflections are shown in figure X-2 as calculated
from Centaur pitch- and roll-rate gyros (located at station 173). The design
allowable modal deflections at station 173 are also shown in figure X-2. The
allowable deflections are only critical from 44 to 80 seconds after Z2-inch rise.
During this period, only deflections in the yaw plane were observed since the
low-range pitch-rate gyro was off scale. The observed yaw-plane first-modal
deflection during the critical time period was less than 10 percent of the de-
sign deflection, and the yaw-plane second-modal deflection during the critical
time period was less than 5 percent of the design deflections. The pitch-plane
modal deflections observed before and after the critical time periocd for both
first and second modes were approximately the same as the yaw-plane modal de-
flections at the same times. Since the deflections in both planes were nearly
equal for both the actual case and for the design criteria, it can be assumed
that the pitch-plane modal deflections do not exceed the design criteria during
the critical time period.

Figure X-3 shows the comparison of first-mode maximum bending deflections
during AC-2, AC-3, AC-4, and AC-6 flights. From this comparison it can be seen
that the lateral first-mode deflections for this flight were about the same as
in other flights. The first- and second-mode frequencies plotted against time
are shown in figure X-4 and are very close to the theoretical values calculated
before the flight.

VIBRATIONS

The vibration profile of AC-6 was similar to previous flights. At launch
and transonic/max Q, the vibration environment was predominantly Gaussian with

sinusoids superimposed. After the transonic region, the only vibrations evident |

were caused by flight events such ag booster engine cutoff, Atlas-Centaur sepa-
ration, etec.

All the accelerometers indicated a perturbation at booster jettison that
is believed to be noise, since it was also visible on some temperature measure-
ments. At 197.5 seconds after launch, the accelerometer indicating outboard
acceleration located on compartment A of the spacecraft (CY58p) oscillated be-
tween data channel band edge in a mode that is typical of instrumentation fail-
ure. The transducer located on the LH, duct (CAB01p) gave a questionable vi-
bration indication starting at approximately 243 seconds after Z-inch rise.

The meximum vibrations are given in table X-I. Radial vibration in the
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interstage adapter was fairly low; AA161o (Ql + Qo station 497) gives the high-
est level, which was 40.0 g's (double amplitude) and occurred during launch.
The maximum vibration indicated by the spacecraft accelerometers was 32.0 g's
(double amplitude) retromotor attachment 1 z-axis (CY52¢p), which occurred at
235.8 seconds after launch. The foot of the spacecraft experienced maximum vi-
bration at launch that was equal to 2.0 g's (double amplitude) with a frequency
of 8.7 cps and was measured on CY50p located at station 125 and sensitive to the
y-direction. The maximum vibration that the mast of the spacecraft experienced
was 8.4 g's (P-P) indicated by an accelerometer located at the top of mast that
read in the y-direction (CYS5¢).

In order to gain an insight into how the actual flight vibration compares
with the qualification levels that were used in designing vehicle and spacecraft
components, a power spectrum analysis was performed on all usable accelerometer
measurements. The power spectral density plots (fig. X-5) included in this re-
port are for the flight times at which maximum vibration occurred. The densi-
ties were obtained by using very short analysis times (0.5 sec or less) to elim-
inate variations with flight time. The spectrum analyzer used was a General
Applied Science Laboratories Model SA12 real-time low-fregquency heterodyne
analyzer.

Examination of the power spectral density (fig. X-5(b)) for the maximum
radial vibration in the interstage adapter (quoted previously as 40 g's double
amplitude) shows that there are sinusoids at 200, 300, and 400 cps, and the data
channel starts to attenuate at 220 c¢ps. If the 400-cps component is assumed to
be noise (inverter crosstalk) the maximum energy level is 0.88 gz/cps at a fre-
duency of 300 cps.

As seen from figures X-5(f) to (o), the vibration profile of the spacecraft
was predominantly sinusoidal, with the maximum levels being below the separation
plane qualification level. The foot area accelerometer (CYSO@) indicated 0.036
g /cps, at a frequency of 25 cps, retroattachment area accelerometer (CY549)
indicated 0.1 gz/cps at a frequency of 25 cps, and the top-of-the-mast accel-
erometer (CY55p) indicated 1.15 g2/cps at a frequency of 50 cps.

AC-6 instrumentation included two microphones, one located on compartment A
(CYGIY) and the other at the top of mast (CY6OY). The maximum dynamic sound
pressure measured in each microphone area was 0.0695 psi (single amplitude) and
0.0727 psi (single amplitude), respectively, these values being close to the
qualification level (ref. 11) of 145 decibels (rms) (fig. X-6 gives the amplitude
as function of spectrum for launch).

At shaped-charge firings, Centaur insulstion-panel jettison, the Atlas-
Centaur separation there were shock loads induced in the spacecraft. This
shock vibration was not indicated by all spacecraft accelerometers because of
their low-frequency response (the frequency of this shock was of the order of
600 to 700 cps). Accelerometer (CY54¢) (best frequency response) indicated a
12.0-g (single amplitude) maximum amplitude shock lasting for approximately 0.05
second. The other high-frequency response accelerometers in the area (CY53p
and CY52¢), indicated 12.5 g's (single amplitude) and 16.0 g's (single ampli-
tude), respectively, after correcting for roll-off. The nature of this shock is
such that it could conceivably cause damage to the spacecraft packages if it is
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not quickly damped out. Spacecraft amplification factors are currently being
investigated to evaluate this situation better. TFigures X-7 to 9 show both the
raw data and amplitude spectrum (resulting from Fourier anslysis) of this
shock. The amplitude indicated by the amplitude spectrum is less than the raw
data value. This is to be expected since the raw data is triangular in appear-
ance.
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TABLE X-I. - MAXIMUM VIBRATIONS OBSERVED DURING COMPLETE AC-6 FLIGHT

Location Measurement Time after Maximum g's, Frequency Comments
number 2-inch motion, double band of
sec amplltude data channel,
cps
Interstage adapter z-axis Q) and Qp, AAlB5¢ 142 4.2 g's 0 to 45 BECO
statlon 455
Panel radial Q, and Qg, station 503 AA1640 Only deflection was at Atlas booster Jettison (noise)
Interstage adapter radial Q; and Qp, AAl8le 1 40.0 g's 0 to 220 Launch
station 497
Interstage adapter radial helium AA838¢ 236.2 10.0 g's 0 to 1200 Atlas-Centaur
bottle, station 519 separation
shock-type
transient
LHo, duct near y-sectlon, CA6019 171.7 13.03 g's 0 to 160 Transducer
statlon 453 Qo failed at
242.9 sec
Spacecraft vibrations:
Compartment A, strain normal CY598 | eeee- 1200 pin./in. 0 to 680 Launch
Foot accelerometer, 0° at sta- CY499 0.6 1.2 g's 0 to 160 90 cps

tion 125 x-axis sensitivity

Foot accelerometer, 0° at sta- CYS0¢ 0.45 2.0 g's 0 to 220 8.7 cps
tion 125 y-axis sensitivity

FPoot accelerometer, 270° at sta- CY5ip 0.85 1.6 g's 0 to 330 8.7 cps
tion 125, sensitive in tangen-
tial direction

Retroattachment 1, z-axis sen- CY52¢ 171.7 11.2 g's 0 to 600 Shock-type
sitivity 235.8 32.0 g's transient
Retroattachment 2, z-axis sen- CY53¢ 235.8 25.0 g's 0 to 790 Atlas-Centaur

sitivity separation
shock-type
transient
Retroattachment 3, z-axis sen- CYS40 235.8 24.0 g's 0 to 1000 Atlas-Centaur
sitivity separation
shock-~type
transient
Top of mast, y-axls sensitivity CY55¢9 0.68 8.4 g's 0 to 80 10 cps
Top of mast, x-axis sensitivity CY56e 0.5 3.0 g's 0 to 60 10 cps
Compartment A, accelerometer CY57¢ 0.68 3.0 g's O to 450 10 cps
outboard sensitivity
Compartment A, accelerometer CY58¢9 171.7 1.6 g's 0 to 110
z-axis sensitivity
Compartment A, outboard sen- CY81Y Launch 147.6 declbeld O to 2100 0.0695 psi
sitivity single
amplitude
Top of mast CYs0Y Launch 148 .0 decibeld O to 1200 0.0727 psi
single
amplitude
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XI. FLIGHT CONTROL

SUMMARY

Analysis of the Atlas-Centaur flight-control telemetry data indicated sat-
isfactory system performance throughout flight.

ATT.AS

Flight-control measurements during Atlas-powered flight were taken from the
Centaur rate gyros. Since the Centaur autopilot is not activated for control
purpose until sustainer engine cutoff (SECO), the flight control measurements are
monitored for correlation with the Atlas flight-control data and to supply sup-
porting data during the booster phases of flight.

At 1ift-off the Centaur rate gyros indicated the usual clockwise roll tran-
sient at a frequency of 3.5 cps and a maximum rate of 1.2 degrees per second
Just pricr to Atlas autopilot activation at 42-inch motion. Following lift-off,
the axial accelerometer indicated longitudinal oscillations at a frequency of
6 cps reaching a maximum of 1.2 g's peak to peak at T + 0.5 second. The oscil-
lations decayed to negligible levels by T + 15 seconds. All past Atlas-Centaur
vehicles have shown similar oscillations (refs. 7 and 12).

Integration of the roll-rate gyro verified satisfactory accomplishment of
the Atlas roll program, indicating a clockwise roll maneuver of 20.1 degrees,
at an average rate of 1.55 degrees per second. The desired launch azimuth was
94.539 degrees, and the pad heading of 115 degrees resulted in a desired roll
program of 20.46 degrees.

Low-order rigid-body and propellant slosh oscillations were observed through-
out booster and sustainer flight. A comparison of analytical and flight teleme-
tered data is shown in figure XI-1l. Good correlation is evident indicating
present methods of analysis in determining flight frequencies are acceptable.

The diverging oscillations in the pitch plane at the frequency of the Atlas
LO02 sloshing mode observed on AC-4 and to a lesser extent on AC-3 prior to
booster engine cutoff (BECO) appear to have been stabilized on AC-6. Although
the oscillations are evident prior to BECO, they approach a limit cycle with
amplitudes reaching peak to peak rates of 0.12 degree per second as measured by
the Centaur pitch-rate gyro.

Rates imparted to the vehicle during insulation-panel jettison were 1.96
degrees per second peak to peak in roll and less than 0.2 degree per second
peak to peak in pitch and yaw. Telemetry received at the insulation-panel-
Jettison event indicated a roll transient of a higher magnitude than the roll
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transients seen on AC-3 or AC-4. Figure XI-2 pitch- and yaw-rate gyro data
showed little activity during the event other than high-frequency vibration at
approximately 25 cps, which corresponds to the frequency of the third bending
mode.

The area of interest, however, is the response that occurred in roll. By
differentiating the roll-rate-gyro output, calculating resultant roll torques,
and subtracting the torques due to vernier engine deflections, the net external
torque on the vehicle can be calculated. The results are shown in figure XI-3.

The net torques on the vehicle were substantial in magnitude and changing
in direction. A torque as shown in figure XI-3 is difficult to conceive since
insulation-panel-hinge reactions are the only source of external forces on the
vehicle. The Hinges are mounted in such a manner as to cancel torques due to
reactions normal to a line passing through the hinge points. No satisfactory
explanation is known as to the source of the observed torques.

Rates due to nose-fairing-jettison were 0.64 degree per second peak to peak
in pitch and less than 0.2 degree per second peak to peak in yaw and roll. Dur-
ing both insulation-panel and nose-fairing-jettison events, rates were reduced
to less than 0.2 degree per second peak to peak within 1.5 seconds.

Sustainer engine cutoff was commanded at T + 234.3 seconds. Residual ve-
hicle rates due to sustainer and vernier engine cutoff (SECO/VECO) were 0.2 de-
gree per second in pitch and essentially zero in yaw and roll, at a point just
prior to vehicle separation. These rates compared similarly with those observed
during the AC-4 flight. Atlas-Centaur separation was commanded at T + 236.3
seconds following firing of the shaped charge, cutting the interstage adapter at
T + 236.2 seconds. By T + 237.8 seconds, the previously mentioned residual ve-
hicle rates had increased to 0.54 degree per second in pitch, 0.17 degree per
second in yaw, and -0.16 degree per second in roll, indicating small external
torques acting on the Centaur vehicle. These were probably the result of Atlas
retrorocket gas impingement on the Centaur vehicle and also small torques due
0 the Centaur boost-pump exhaust gases (started at T + 203.8 sec).

CENTAUR

Main engine prestart was commanded at T + 237.8 seconds. The hydraulic
circulating pumps were energized at T + 234.8 seconds (SECO + 0.5 sec). Main en-
gines vere then gimbaled toward a null position at an average rate of 0.6 degree
per second. The engines, however, are enabled to respond to vehicle rates and
approach gimbal positions in an attempt to reduce the vehicle rates, although
engine thrusts are not yet available. Engine positions just prior to MES were
C-1 pitch, 0.64 degree; C-2 pitch, 0.51 degree; C-1 yaw, -1.02 degrees; and C-2
yaw, -0.04 degree.

The AC-6 vehicle start transients were mild compared with AC-2 and com~

parable in magnitude to AC-4. Rates imparted to the vehicle due to the main
engine ignition transients were -1.35 degrees per second in pitch, 0.11
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degree per second in yaw, and 3.26 degrees per second in roll. These rates
were primarily the result of engine differential thrust buildup, relative
engine positions, and the residual vehicle rates. Corresponding maximum
engine deflections due to these rates were C-1 pitch, 0.38 degree; C-2
pitch, O.38 degree; C-1 yaw, 0.83 degree (peak to peak); and C-2 yaw, 0.45
degree (peak to peak).

At a point just prior to enabling the guidance steering signals (MES +
4 sec) vehicle rates had been reduced to 0.54 degree per second in pitch, -0.04
degree per second in yaw, and O.7 degree per second in roll. Engine positions
at this time were essentially at null.

The guidance steering commands were enabled at T + 246.8 seconds (MES +
4 sec). The guidance resolver chain outputs indicated errors of 5 degrees
(nose up) in pitch and 3 degrees (nose right) in yaw. These errors had been
accumulated during the separation and MES flight phases. Vehicle rates due to
steering enable were -1.8l degrees per second in pitch and -1.40 degrees per
second in yaw. Corresponding engine deflections were C-1 pitch, 0.64 degree;
C-2 pitch, -0.64 degree; C-1 yaw, -0.64 degree; and C-2 yaw, -0.51 degree.
This error was nulled in approximately 3 seconds.

Following the settling out of the MES and steering enable transients, the
engines indicated trim positions of C-1 pitch, 0.014 degree; C-2 pitch, 0.17
degree; C-1 yaw, 0.0l degree; and C-2 yaw, -0.09 degree. At MES + 220 seconds,
trim positions were C-1 pitch, O0.13 degree; C-2 pitch, 0.11 degree; C-1 yaw,
-0.25 degree; and C-2 yaw, -0.12 degree. Low-level engine-limit cycling in the
pitch and yaw planes was also observed during this period at a frequency of
approximately 0.25 cps (rigid body) and peak-to-peak amplitudes of 0.12 degree.

Low~-order slosh and rigid-body oscillations were observed throughout the
povwered phase at peak-to-peak amplitudes (average) of 0.2 degree per second.
Frequency components agreed with the predicted engine-limit cycle frequencies
as shown in figure XI-1.

CENTAUR COAST PHASE

At T + 747.8 seconds, spacecraft separation was commanded. A complete
discussion of separation dynamics is presented in section X, VEHICLE DYNAMICS.
Approximately 9 seconds prior to the separation sequence, vehicle rates were
below the rated control engine switching thresholds, and no engines were com-
manded on during this time. The following table shows the residual rates of the
Centaur vehicle just prior to separation, the rates imparted the Centaur vehicle
after separation, and the differential change:

Plane of | T + 747.8 sec,| T + 748.1 sec, Differential

motion deg/sec deg/sec postseparation - preseparation,
deg/sec

Pitch -0.12 -0.11 0.01

Yaw .19 .14 -.05

Roll .04 .03 -.01
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CENTAUR RETROMANEUVER

Centaur turnaround was commanded at T + 752.8 seconds as indicated by both
attitude engine commands and rate-gyro data. At the initiation of turnaround,
the guidance resolver-chain outputs indicated that the vehicle was approxi-
mately 18 degrees nose down and 12 degrees nose right with respect to the guid-
ance steering vector generated at MECO. In response to the turnaround command,
the vehicle reached maximum rates of 1.48 degrees per second in pitch and 1.45
degrees per second in yaw. Vehicle roll rates were maintained within the con-
trol thresholds. At T + 845 seconds, vehicle steering completed the turnaround
maneuver approximately 15 seconds before the start of blowdown.

The blowdown maneuver was commanded at T + 872.8 seconds and enabled oxy-
gen to be vented through the main engine and hydrogen through the chilldown
valves, to produce thrust of sufficlent magnitude in order to alter the orbital
path of the expended Centaur stage. Coincident with the blowdown command, the
hydraulic recirculating pumps were started to aline the thrust vector as com-
manded by attitude and rate errors. This was done in order to minimize blow-
down torques and maximize the effect of the small axial thrust. Comparison of
the Surveyor and Centaur orbital data indicates the separation distance was 1300
to 1600 kilometers 5 hours after separation.

Torquing moments were generally about the yaw and roll axes and were well
within the capability of the attitude control system. During the first 100 sec-
onds of blowdown, torquing moments were at their greatest, resulting in maximum
duty cycles of approximately 65 percent. This duty cycle, however, was not
maintained for long periods, and the average duty cycle was of the order of
10 percent. Duty cycles decreased with time thereafter as a result of tank
pressure decay and subsequently lower torques.

Attitude control engine firings are plotted in figure VI-22, which show
the attitude engine activity from MECO through the blowdown maneuver.
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XITI. GUIDANCE

The Centaur guidance system flown on the AC-6 vehicle exhibited nominal
performance throughout the flight. Velocity errors at T, + 689 seconds were as
follows: B8V, = -0.4 foot per second, ®Vy = -0.4 foot per second, and &Vy = 0.2
foot per second. One of the prime objectives of this flight was to demonstrate
the capability of the inertial guidance system to inject the SD-2 Surveyor
spacecraft on a lunar intercept trajectory. The maximum allowable spacecraft
midcourse correction for miss only is 50 meters per second. Tracking data in-
dicated a midcourse correction of 4.25 meters per second for the AC-6 flight.

The system was calibrated on F - O day, and the Day 2 Plan I "J" values
(launch-on-time constants, ref. 15) were loaded into the airborne computer.
After completion of calibration, the system was optically alined to an azimuth
of 115 degrees from north. The system was advanced to the inertial mode 8.97
seconds prior to lift-off.

The computed steering vector successfully guided the vehicle during the
sustainer and Centaur powered phases and provided a retrovector to which the ve-
hicle was steered during retromaneuver and blowdown. The airborne computer
generated booster cutoff, sustainer cutoff backup, and main engine cutoff dis-
cretes, as planned, with the significant times shown in the following table:

Function Time, Data source
sec (ref. 5)
BECO 141. 800 TLM CI21X

SECO backup 236.573 TIM  CI22X

MECO 679.08 TIM CI19X

Table XII-I is a summary of the 21 digital words that were telemetered during
each computer cycle by the digital data link.

A discussion of system performance is presented in the following sections.
The times preceded by the symbol T are referenced to 2-inch motion, and those
preceded by Te are referenced to computer zero time. Figure XII-1 is a func-
tional schematic drawing of the guidance system.

GIMBAL SERVOSIGNALS

Telemetry measurements of the gimbal torque motor input voltages and the
7.2-kilocycle demodulator outputs indicate that the platform remained stable
throughout the flight. The maximum gimbal servoloop errors are shown in table
XII-TI. Gimbal 1, 2, and 3 demodulator error voltages indicate equivalent gyro
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error angles well within the 60 arc-seconds of required dynamic accuracy. Gim-
bal 4 demodulator error does not represent an inertial misslinement but rather
the gimbal 2 resolver error.

At T + 2.3 seconds, gimbal 2 reflected the start of the roll program and
at T + 15.3 seconds, gimbal 3 responded to the initiation of the Atlas pitch
program. At T + 43.6 seconds, gimbal 4 uncaged at a pitch angle of 16° (fig.
XII-2(a)), as computed from the nominal Atlas pitch profile. During the Atlas
powered phase of flight, gimbals 1 and 2 oscillated at approximately 1 cps,
which is indicative of propellant sloshing. From T + 50 seconds until BECO,
low-frequency oscillations from 0.25 to 0.33 cps observed on gimbal 1 were
attributed to rigid body dynamics. During the Centaur phase of flight, oscil-
lations of approximately 0.2 ecps, which are characteristics of rigid body dy-
namics, were observed on gimbal 1. Propellant sloshing caused oscillations of
0.5 to 0.75 cps to appear on gimbal 2 during Centaur phase. At T + 496 seconds,
the pitch gimbal voltage reflected a computer steering command for perigee cor-
rection. At T + 753 seconds, gimbals 1 and 3 responded to the beginning of
retromaneuver and indicated satisfactory performance throughout the vehicle
retromaneuver. Telemetered analog signals of gimbal 3 torque motor input and
demodulator output show the occurrence of both the perigee correction and the
beginning of retromaneuver (figs. XTI-2(b) and (c)).

TORQUING LOOPS

The digital and analog torquing signals indicated that the guidance system
went into the flight mode 7.8 seconds prior to lift-off. Analog signals re-
vealed two unexplained shifts in the W-torquing loop. The first shift occurred
at T - 0 and was equivalent to a 0.45 degree per hour change in the W-torquing
rate. The second occurrence was at T + 204 seconds (same time as nose-fairing
jettison) and was equivalent to a torquing change of 0.30 degree per hour. An
equivalent change in torquing at the time of nose-fairing jettison occurred dur-
ing the flight of the AC-4 vehicle. The digital torquing output did not give
any indication of the two changes in W-torquing. The digital and analog data
were reduced to the same units, "differenced," and the results are plotted in
figure XII-3. The bias in the differences is & result of signal conditioner
null offset, and figure XII-3(c) clearly indicates the two shifte previously
discussed.

ACCELEROMETER LOOPS

Oscillograph recordings of the 14.4-kilocycle demodulator output voltages
are shown in figure XII-4. These measurements indicate satisfactory perfor-
mance of the accelerometer loops throughout the flight. Prior to T - 0 and
U- and V-demodulator outputs showed a saw-toothed oscillation with a frequency
from 0.17 to 0.25 cps. Similar cycling occurred in all three loops during the
coast phase of flight. This is normal operation of the accelerometer loops
when the inertial components are sensing zero gravity. The following table
lists the largest pendulum offsets observed during flight:
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BEvent Accelerometer direction

Ay |-ty | Ay | -Ay | Ay | oAy
Maximum pendulum excursion, arc-sec

Lift-off 30 38 20 7 24 36
Mach 1 27 22 8 12 18 16
BECO 18 12 8 8 15 8
Booster jettison 14 20 -~ 16 15 12
Insulation-panel jettison 28 36 12 8 20 24
Nose-fairing jettison 30 37 16 16 36 50
SECO 20 22 6 14 12 8
Atlas-Centaur separation 20 40 8 8 8 8
MES 12 -- 6 6 12 8

The demodulator outputs indicated small error voltages throughout powered flight
with maximums occurring at the time of maximum shocks. At T + 742 seconds, the
U and W demodulator outputs were no longer monitored. The two available chan-
nels allowed more spacecraft measurements to be telemetered. A histogram of the
incremental velocity pulses (AV's) required to rebalance the pendulous acceler-
ometers indicates that there were no large limit cycles or bursting of the loops.

STEERING LOOPS

The guidance steering loop performed exceptionally well throughout the
flight. During the boost phase, the computer outputs were zero, and the X- and
Y-resolver-chain outputs were maintained at null. Steering was enabled by the
flight control system at T + 148 seconds, at which time the X- and Y-resolver-
chain outputs moved off null indicating that the computer was compensating for
trajectory errors built up during boost phase (fig. XII-5). Guidance steering
was closed loop during sustainer and Centaur powered phases of flight. The
steering vector was locked out by the flight control system at SECO until
MES + 4 seconds when the autopilot reinitiated acceptance of guidance steering
commands. At T + 497 seconds, the Y-resolver-chain output reflected a computer
command perigee correction in the pitch plane. After MECO had been generated,
guidance steering was disabled until T + 706 seconds, at which time the steering
vector was switched to the negative of the velocity vector to provide the retro-

vector to which the vehicle was steered after separation of the spacecraft (fig.
XII-5).

FUNCTIONAL PERFORMANCE

The computer digital steering value minus the telemetered analog value as a
function of time is shown in figure XII-6. Analysis indicates that the differ-
ence is a result of signal conditioner null offset. The computer-generated mis-
sile actual velocity is shown in figure XII-7, and the difference of nominal
velocity from total velocity is shown in figure XIT-8. The guidance computer
correctly calculated the missile velocity, which was close to the nominal expec-
ted velocity as a function of time. Figure XII-9 shows plots of computer calcu-
lated position, and figure XII-10 shows the difference of the calculated posi-
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tion from the nominal as a function of time. Figure XII-11 indicates that the
platform skin temperature stayed within the 50° to 120° F specifications
throughout the flight. It is also apparent that the inertial component temper-
abures were within their control bands.
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TABLE XIT-IT. - GIMBAL SERVOLOOP MAXIMUM ERRORS

Gimbal | Gimbal demodulator maximum errors |Torquer motor maximum errors

Signal Demodu- | Displacement Signal Torque motor
conditioner | lator error, conditioner input,
output, output, arc-sec output, V(de)

v(de) v(de) v(de)

1 0.40 5.00 7.2 -0.28 -2.80
-.25 -3.13 -4.5 . 40 4.00
2 .30 1.03 10.6 -.20 -2.00
-.18 -.62 -6.18 .15 1.50
3 .45 .74 16.4 -.30 -3.00
-.20 -.33 -7.31 .34 3.40
4 .20 .57 330 -.10 -1.00
-.320 -.85 -500 .20 2.00
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XTTI. ATLAS-CENTAUR INSTRUMENTATION, RADIO FREQUENCY, AND ELECTRICAL SYSTEMS

SUMMARY

The Atlas-Centaur electrical system performed satisfactorily during ground
operations, launch, and through all phases of programed flight. All electrical
functions, voltage and current levels were within specifications. This was
the first Centaur flight in which the new high-energy (1 amp - 1 W) squibs, that
provided greater protection from stray currents and static discharges, were used
exclusively. Squib simulators were used successfully during ground tests to
provide assurance of adequate current flow to all pyrotechnics. Atlas-Centaur
RF system performance was also satisfactory. Telemetry coverage was provided
well beyond the end of retromaneuver. Main power cutoff was accomplished on
schedule, and data quality was generally good. Approximately 98 percent of all
instrumentation yielded valid data. Range Safety Command systems experienced
no malfunctions during flight. The August 10, 1965 launch attempt, however,
was scrubbed because of the failure to obtain a positive indication of an armed
Centaur destruct system.

C-band tracking of the Centaur was adequate to provide acquisition of the
spacecraft by the deep-space network, although it was intermittent. The JPL
deep-space network acquired and tracked the SD-2 dynamic model S-band trans-
ponder as planned; signal strength from the spacecraft dropped off 2 hours
sooner than the expected 20-hour minimum. Glotrac functioned normally and will
permit a precision powered flight trajectory to be generated for the guidance
component error analysis program.

Launch countdown logic and event times were modified from those at Complex
36A to improve probability of a successful launch. Upper umbilicals were ejec-
ted earlier in the countdown, while the time from engine start to vehicle re-
lease was reduced approximately 1/2 second to gain maximum thrust from the lower
stage.

ELECTRICAL SYSTEM

Atlas

The major Atlas electrical system components were a manually activated
main vehicle battery, two telemetry batteries, and a three-phase 400-cycle ro-
tary inverter. The main battery bus voltage indicated near nominal voltage
throughout powered flight. On transfer to internal power, the battery voltage
dropped momentarily to 25.8 volts, recovering to 27.6 volts in approximately
200 milliseconds. A steady-state low of 27.3 volts was recorded at lift-off
and reached a high of 27.8 volts at loss of signal.

ey 167



The Atlas main power changeover switch satisfactorily transferred the
launch vehicle load from external ground power to internal battery supply. Op-
eration of the telemetry batteries was satisfactory, as verified by the per-
formance of the telemetry system.

The Atlas vehicle utilizes a rotary inverter to deliver ac power at a nom-
inal 115 volts, 400 cycles, three phase. The inverter operation was satisfac-
tory with no recorded malfunction during f£flight. At launch, the voltage was
114.43 volts and the frequency was 402 cycles. Recorded data showed good re-
covery from load variations with the voltage varying from 114.33 to 114.72
volts during flight. The terminal value was 114.53 volts at T + 520 seconds
when Atlas telemetry ended. The frequency varied from 402 to 402.7 cycles
which maintained a differential frequency of two to three cycles with the Cen-
taur 400-cycle inverter, required to avoid dangerous oscillations in the servo-
amplifier electromechanical loop.

Centaur

The Centaur vehicle power requirements were adequately supplied by one
100-ampere-hour battery, two range safety batteries, two pyrotechnic batteries,
and a 400-cycle static inverter. Three notable configuration changes were made
to the Centaur electrical power system:

(1) The main missile, telemetry, and tracking system power was supplled by
a single 100-ampere-hour battery.

(2) A battery preload was used to precondition the main battery prior to
power changeover to internal.

(3) The Range Safety Command system was supplied by two batteries of a new
design.

The main battery voltage and current were near nominal throughout the
flight. Vehicle system dc input (CE28V) indicated a level at lift-off of 27.8
volts. A low of 27.1 volts was recorded during main engine start sequence
(maximum loading) and & high of 28.1 volts was reached during retromaneuver.

The l4-ampere preload of the main battery prior to changeover to internal
power preconditioned the battery to accept Centaur load. Preconditioning of the
battery minimized the voltage drop at changeover that could be detrimental to
the user systems. The resulting battery voltage level dropped to approximately
26.5 volts on transfer (specification limit is 26 V minimum). The main missile
battery current (CEIC) at lift-off was 56 amperes, reaching a high of 69 amperes
at main engine start. Comparison of the profile for ground test battery load
current with the flight recorded profile showed close correlation between se-
quential events (see fig. XIII-1). Several small spikes were noted on the cur-
rent recording from T + 103 to T + 117 seconds, which were not identified with
any specific event. The spikes appear to be valid data, although they could be
attributed to spurious noise from a source as yet undetermined.

Transfer of the Centaur load was successfully accomplished by the main
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power changeover switch in less than 250 milliseconds. No abnormal voltage or
current transients occurred on transfer of load from external power source to
internal battery supply.

On completion of the Centaur flight requirements at T + 1853.8 seconds the
power changeover switch satisfactorily disconnected the main vehicle load from
the battery while maintaining connection of the battery to the telemetry,
C-band, and Azusa systems.

Satisfactory operation of the pyrotechnic batteries and relay system was
verified by the successful jettison of the nose-fairing and insulation panels.
The battery voltages were 35.0 volts at lift-off (minimum specification limit
is 34.7 V).

Two new range safety system batteries, used for the first time, performed
satisfactorily as verified by the range safety command receiver operation. The
batteries were specially designed to provide the proper voltage level for re-
ceiver operation and vehicle destruct capability. The battery voltages at 1ift-
off were 32.3 and 32.5 with receivers in operation (minimum specification limit
is 30 V).

The staging disconnect functioned normally at T + 234.9 seconds after with-
standing the shock produced by the jettison of the insulation panels. The actu-
ator temperature was 72° F at lift-off (minimmn value is 60° F).

The Centaur static inverter functioned normally and within specifications
delivering three-phase 400-cycle power to the autopilot, guidance, and
propellant-utilization systems. The inverter also supplied reference frequency
to telemetry and gyros. The addition of the PU system on AC-6 caused a slightly
leading power factor which accounts for the somewhat higher ac voltage. The
voltages remained fairly constant throughout flight and were 116.3 to 116.5
volts for phase A, 115.5 to 115.7 volts for phase B, and 114.6 to 114.8 volts
for phase C.

Since the inverter frequency was crystal controlled and was independent of
load conditions, the frequency remained at 400.00 cycles throughout the flight.
The ambient air temperature of the inverter at launch was 68° F and the inverter
skin temperature was 87.5° F rising to a maximum of 183° F at termination of the
programed flight. In figure XIII-2, it can be seen that the inverter imme-
diately started to cool down and fell to 137°C F at T + 3600 seconds when telem-
etry was lost.

INSTRUMENTATION SYSTEM
There were 442 measurements telemetered on AC-6, of which 267 were Centaur
measurements, 150 were booster measurements, and 25 were payload measurements.
The number of measurements by vehicle system is shown in table XITII-I. Three

measurements were deleted prior to launch as a result of malfunction:

(1) C-1 engine pump IHp inlet temperatures (CP60OT)
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(2) IH, tank stem temperature (cP127T)
(3) Helium-purge-bottle discharge pressure (CPL146P)

The two temperature transducers were damaged during installation and were not
easily accessible for repair or replacement during the countdown. The third
measurement was deleted as a result of a transducer failure.

The following measurement anomalies were noted during the AC-6 flight:

(1) The high rate LH2 vent dynamic pressure (CFL90P) was consistently low
during GH, venting and actually went negative during the early portion of flight.
The cause of failure has not been determined; however, a more reliable trans-
ducer will be installed in an environmentally improved location on future ve-
hicles.

(2) The low rate LH, vent dynamic pressure (CF191P) data was questionable.
This transducer will also be relocated.

(3) The nose-cap surface-temperature (CAS0T and CA958T) readings were
erratic; at approximately T + 130 seconds, these readings increased abruptly and
reached about twice the expected value. This faillure has been attributed to
impropsr installation.

(4) The LH, duct vibration (CA6010) operation was intermittent throughout
the flight. A similar failure in this mode was caused by a defective coaxial
cable. A new design has been initiated for a more reliable cable; however, the
availability and implication have not been established.

(5) The spacecraft compartment A accelerometer (CYS580) oscillated from
band edge to band edge 0.7 second after nose-fairing jettison for no apparent
reason.

(6) The interstage adapter panel radial vibration (AA1640) exhibited no
useful data during flight. No resolution of this problem has been made.

TELEMETRY

The AC-6 telemetry system consisted of six RF links. Two of these links
were on the Atlas booster. Atlas RF 1 transmitted booster operationgl measure-
ments at 229.9 megacycles. Atlas RF 2 was used primarily for interstage adapter
R&D measurements and operated at 232.4 megacycles. The Atlas transmitters ra-
diated through a ring-coupler from two antennas, one on each Atlas pod.

The four telemetry links on the Centaur vehicle were coupled to a single
antenna mounted on a ground plane located on the umbilical island. Signals were
radiated through the nose fairing until nose-fairing jettison at T + 196.6 sec-
onds. Centaur operational measurements were telemetered on S5 1, and Centaur
R&D measurements were telemetered on SS 2. These two subsystems were located in
the forward equipment area on the Centaur vehicle. Subsystems 3 and 4 were lo-
cated in the retromotor simulator portion of the Surveyor dynamic model and
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transmitted payload envirommental information until spacecraft electrical dis-
connect, which occurred at T + 740 seconds. Subsystems 1 and 2 functioned until
loss of signal at T + 6950 seconds. Telemetry transmitter frequency and nominal
povwer were as follows:

Telemetry link Frequency, Nominal
Me power,

W

Atlas RF:
1 229. 9 10
2 232. 4 4
Centaur SS:

1 225. 7 4

2 235.0 4

3 243. 8 4

4 251.5 4

Six measurements of telemetry parameters were made on AC-6. These were skin
temperature measurements of SS 1 to 4 and thermocouple reference junction tem-
peratures on the Atlas and Centaur. All measurements were as expected with the
exception of telemetry SS 1 skin temperature (CT94T). This measurement went off
scale (low) indicating a temperature less than 0° F shortly after the start of
tanking. This low temperature was probably caused by the leakage of helium
through the forward insulation-panel seal. The temperature remained off scale
(low) until approximately T + 8 minutes. At that time, the measurement came on
scale, and the tempersture increased slowly to 24° F at T + 17 minutes. No data
loss or anomalies resulted from this low temperature. Sumary of the AC-6
telemetry coverage from time of 1ift-off to loss of signal at Pretoria is given
in figures XIII-3 and 4.

Analysis of the signal strength records indicated that the performance of
all the telemetry links was satisfactory throughout the flight. The only drop-
out of telemetry data was experienced by the TEL IT ground station at booster
engine jettison (T + 145 sec) for a period of 0.2 second. This dropout had oc-
curred on previous vehicles also and may have been caused by flame attenuation
(fig. XIII-5). At this time, flame attenuation is more prevalent because of the
backscattering effect of the sustainer enginels flame impinging on the booster
section as it is Jjettisoned. However, because of a different look angle, the
telemetry data that is recorded from Grand Bahama Island at this same time does
not have any dropout (fig. XTII-6).

RANGE SAFETY SYSTEM
A lightweight Range Safety Command system for the second stage (Centaur)
and spacecraft (Surveyor) was flown on AC-6 for the first time. A block diagram

of the system is shown in figure XIII-7. The functions of the system are to

(l) Cut off the Centaur main engines to an RF command, resulting in zero
thrust
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2) Destroy the LHp and LOp tank structure, in response to an RF command
2
to disperse the propellants

(3) Destroy the Surveyor engine, in response to an RF command, by causing
a conical-shaped explosive charge to detonate and bore a hole through
the engine housing, penetrate the propellant, and emerge through the
opposite side (the shaped charge was inert for AC-6)

(4) Cause the actions in (2) and (3) on detection of premature separation
of the Surveyor from Centaur (disarmed for AC-6)

The first-stage (Atlas) Range Safety Command system was the same for AC-6
as on previous Atlas-Centaur flights. Both systems performed properly except
for the failure to obtain an armed destructor command during the August 10
attempted launch countdown. The launch was scrubbed at approximately T - 2 min-
utes as a result of a failure of the Centaur destructor to respond properly to
the "ARM" command. The failure was subsequently determined to be due to inade-
quate design of the frost plug. It is inserted after removal of the safe-lock
plug which mechanically prevents arming of the destructor. The design of this
plug is such that it can be inserted improperly with resultant distortion of the
plug that interferes with the arming of the destructor.

On August 11, 1965, after suitable replacement of the frost plug, the
"ARM" function worked properly, and launch was successfully accomplished. Both
Atlas and Centaur RSC systems performed satisfactorily throughout the flight.
Signal strength was adequate to transmit commands to both the Atlas and Centaur
RSC systems. The minimum gain margin for the Atlas system was 55 decibels,
vhile the gains for the upper stage were 20 and 18 decibels, respectively, for re-
ceivers 1 and 2. The only command to the system was sent from the Antigua (sta-
tion 91) transmitter shortly after main engine cutoff to disable the range
safety system. ZFigure XIII-8 shows the operation of the various ground trans-
mitters in supporting AC-6 range safety.

TRACKING SYSTEMS
C-Band

The Centaur stage C-band radar transponder and the pair of antennas under
the insulation panels used in conjunction with ETR and Bermuda ground radar
stations provided adequate tracking of the Centaur vehicle through the powered-
flight phase. Real time computation of the Antigua and Twin Falls (ship) C-band
tracking data after MECO enabled an early orbit to be determined. Look angles
were transmitted to the DSIF station at Johannesberg permitting early acquisi-
tion of the S-band transponder in the dynamic model. C-band operation was sat-
isfactory for the first 500 seconds of flight. Stations tracking later portions
of the flight experienced tracking difficulty. The C-band radar coverage is
shown in figure XIII-9. Extracts from the station logs follow:

Station 1. Cape Kennedy. - Beacon performance was satisfactory. All commit-
ments were met. At loss of signal, the frequency deviation was 3 mega-
cycles (see fig. XIII-9).
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Station 19. Merritt Island. - The average signal strength was 45 decibels above
the receiver threshold. Slight deterioration of the beacon return was noted
from T + 90 to T + 100 seconds. At T + 500 seconds, the beacon return de-
teriorated both in amplitude and pulse width until the end of tracking.

Station 3. Grand Bahama Island. - FPS-16 lost tracking from T + 266 to T + 283
seconds, and the FPS-18 lost tracking from T + 412 to T + 447 seconds.
Other stations operating showed no anomalies so these losses may be attrib-
uted to station problems or poor look angles. Final loss of signal occurred
at T + 543 seconds, and at this time, the freguency deviation was down 7 to
9 megacycles.

- Station 7. Grand Turk Island. - The beacon shifted in frequency and dropped

15 to 20 decibels in signal strength at approximately T + 435 seconds. The
pulse was extremely narrow and the loss of signal frequency deviation was
-6 megacycles.

Station 9. Antigua Island. - Shortly after 500 seconds, the signal dropped to
approximately 15 decibels. A weak signal was confirmed by Grand Turk, and
tracking was maintained to the horizon. The final beacon frequency reading
was off -3 megacycles.

Station 86. Twin Falls Ship. - Tracking was complicated by locally generated
noise interference.

Station 12. Ascension Island. - Lock-on was late as a result of computer pro-
‘ gram input and the beacon frequency shift.

| Station 13. Pretoria. - This station reported negative tracking. The beacon
transmitter frequency shift could have exceeded the radar receiver local os-
cillator tuning range of +13 megacycles.

Indications are that the C-band transponder experienced the following
symptoms:

(1) Width and amplitude deterioration of the return pulse
(2) Frequency deviation that may have gone out of specification

A magnetron failure within the transponder will produce frequency and
pulse behavior identical to that recorded for AC-6. Conditions necessary in-
clude pulling, pushing, temperature change, or movement of the tuning mechanism
which will produce a frequency shift. Temperature is discounted based on the
telemetry data of the transponder skin temperature indicating normally (~36° F
at T - 0, rising to ~65° F at T + 75 min). Pulling may be caused by either a
change of VSWR and/or cable losses, while pushing may be caused by a power
supply change. Analysis of this anomaly has been made with design engineering
testing. The probable cause of failure was loss of internal cannister pressure
through one of the seals. Fubture preflight checkout shall include more exten=
sive testing of the electrical and mechanical aspects of the unit.
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Glotrac

A Centaur stage Azusa type-C transponder and antenna system in conjunction
with Glotrac segment 1 enabled powered flight position and velocity data to be
determined with precision through the measurement of Doppler shift at three or
more widely separated ground stations. Glotrac station coverage is shown in
figure XIII-10. Handover at 400 seconds from the MARK II transmitter at the 1
Cape to the Bermuda transmitter was satisfactorily accomplished within 4 sec-
onds.

The Azusa interstage adapter antenna is used to provide coverage through
the early flight phase when insulation panels cover the Centaur mounted antenna.
At nose-fairing jettison (T + 197 sec) the dc power to the coaxial switch cir-
cuit is interrupted causing the switch to connect the Centaur mounted antenna tc
the transponder.

S-Band

The SD-2 dynamic model contained an S-band transponder assembly and an om-
nidirectional antenna mounted on top of the forward mast. The transponder oper-
ated on low-power (100 mW) mode until approximately 1l seconds prior to space-
craft separation, at which time the Centaur programer initiated a switchover
command to the high-power (10 W) mode. The spacecraft was acquired by the
Johannesberg DSIF approximately 20 minutes after injection, and two-way lock was
obtained. Deep-space tracking of the spacecraft by Johannesberg, Goldstone, and
Canberra continued for approximabtely 18 hours, at which time there was a marked
dropoff in transponder power due to battery depletion. The precision deep-space
tracking of the spacecraft after separation enabled an overall guidance system
evaluation to be made. Tracking data indicated that the injection accuracy was
excellent and that the spacecraft was well within the midcourse correction capa-
bility allowables. See section VI for discussion of trajectory (also ref. 17).

ELECTRICAL GSE

A modification to the ETR 36B GSE facilities provided the capability to
monitor and record 23 channels of voltage and current data for the Atlas and
Centaur electrical systems continuously through the preflight, countdown, and
postflight operations.

A dual industrial power source was provided to the complex by completing an
alternate route with capability for remote manual switchover in the event of an
outage. The critical power shortage was relieved by requesting priority before-
hand via an "express" bus which essentially provides preferential service simi-
lar to the service afforded manned launch complexes at ETR. This was provided
to minimize outage possibilities such as occurred on previous Centaur count-
downs.

No major electrical GSE anomalies occurred during either the aborted launch
attempt of August 10 or the successful launch of August 11. Several minor GSE
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problems were experienced during major preflight testing. A brief outline of
these significant incidents appears in section ITI, PRELAUNCH HISTORY, and is
discussed in greater detail, with corrective actidns taken, in the andlysis and
evaluation of the corresponding system.

There were two significant problems observed in the electrical GSE both in-
bvolving the dc power supplies:

(1) The 7-volt dc battery simulator supply to the Atlas vehicle exhibited
an unstable voltage characteristic during the composite readiness test and nec-
essitated replacement by a flight-type battery in order to complete the test.
This same problem had occurred in an earlier test. The power supply was subse-
quently returned to the vendor.

(2) It was noted that a potential difference exists between the ground re-
turns of the 28-volt dc power supplies in the transfer room and the blockhouse
as well as with the battery simulator supply in the gantry. This potential dif-
ference is manifested by changes in landline calibrations and becomes evident at
power transfer to the battery simulator supply, or when either the blockhouse or
transfer room supplies are cut off. This is a condition that is prevalent at
all Atlas launch complexes but which can be improved considerably by extensive
modification to a single-point grounding system.

Corrective action is now in process to rectify two other anomalies in the GSE:

(1) Cooling air to the propellant level control unit chassis was inadequate
resulting in improper operation of the tanking system. A supplementary source
of cooling air effected a temporary fix to permit completion of tanking tests
and launch preparations for the AC-6 flight.

(2) Unreliable operation of the vehicle optical alignment door and lack of
position monitoring made it necessary to monitor the door position visually dur-
ing launch preparations.

A listing of significant events and the time at which they occurred is shown in
table XIII-ITI.
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TABLE XIII-II. - SIGNIFICANT FLIGHT EVENTS

Event Landline Time of occurrences, sec
measurement
number Nominal Actual
(a)

Engine start command ' - AP1161X (347) T - 7.83 T - 8.27
Upper umbilicals ejected CN1615X (354) T - 3.21 T - 3.20
Ignition complete (main stage limiter) | AP1617X (28) T - 2.17 T - 2.15
Vehicle release AP1577X (363) T - 0.80 T - 0.78
2-in. motionP AM030X (364)| T - 0O T -0
Lower boom solenoid valve CN1465X (88) T-0 T-0
Auxiliary 2-in. motion CN1474x (365) T + 0.03 T + 0.04
Upper boom solenoid valveC® CN1464X (84) T + 0.25 T + 0.26
8-in. rise AN1827X (366) T + 0.26 T + 0.27
42-in. rise (final umbilical ejected) | AN1066X (469) T + 0.98 T + 0.85

@Numbers in parentheses refer to pen recording numbers.

There was no evidence of erratic 2-in. rise switch operation, observed on pre-
vious flights between lift-off and 42-in. rise, which had been attributed to
flame impingement. The switch cabling was wrapped with Blastape to prevent
this from happening.

CThe upper boom solencid valve received its signal at T + 0.260 sec, indicating
that the primary actuating device (240-msec time-delay relay) initiated upper
boom motion rather than the backup signal from the 8-in.-rise switch that oc-~
curred at T + 0.270 sec.
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APPENDIX A
SYMBOLS
A reference area
A-C Atlas-Centaur
AFETR Air Force Bastern Test Range
A/P autopilot
ac alternating current
BECO booster engine cutoff
BET best estimate of trajectory
BPS boost-pump start
burp step pressurization of propellant tank
Cx standard aerodynamic drag coefficient

C-band frequéncy band used in radar (range, 3.9 to 6.2 gigacycles)

CRT composite readiness test

cps cycles per second

D drag

D/A digital-analog

DSIF deep-space instrumentation facility
de direct current

EST Eastern Standard Time

ETR Eastern Test Range

F - days prior to launch

FPR flight performance reserve

ap/c General Dynamics/Convair

GET best estimate of trajectory based on guidance data
GH2 gaseous hydrogen

Y 185



Glotrac Global tracking

GMT Greenwich Mean Time

gpm gallons per minute

GNo gaseous nitrogen

GO2 gaseous oxygen

GSE ground support equipment
H2 hydrogen

Hzo2 hydrogen peroxide

JPL Jdet Propulsion Laboratory
Lio liquid hydrogen

LHe liquid helium

LNo liquid nitrogen

10o liquid oxygen

M Mach number

MECO main engine cutoff

MES main engine start

max Q maximum aerodynamic load
N load factor, g's

Ny load factor in x-direction
Ny load factor in y-direction
N, load factor in z-direction
NPSH net positive suction head
NPSP net positive suction pressure
02 oxygen

P-P peak to peak

PLIS propellant level indicating system
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psi
psia
psid

psig

Q,QUAD

rms

rpm

TCA
TEL
Telepak
TLM

oV
VECO

VSWR

pounds per square inch

pounds per square inch absolute
pounds per square inch differential
pounds per square inch gage
propellant utilization

quadrant

dynamic pressure

radlio frequency

root mean square

revolution per minute

rocket propulsion fuel

Range Safety Command

frequency band used in radar (range, 1.55 to 5.20 gigacycles)
Surveyor dynamic model 2

sustainer engine cutoff

time from lift-off (2-in. motion)
time referenced to computer zero time
MECO backup

temperature control amplifier
telemetry receiving station
telemetry package

telemetry

incremental velocity impulse
vernier engine cutoff

voltage standing wave ratio
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APPENDIX B

CALCULATTIONS OF PROPELLANT RESIDUALS
The 1O, and LH, residuals at MECO were calculated by using the time that
the propellant level passed the bottom of the PU probe as a reference point.
The calculations are summarized as follows:

Liquid oxygen:

Station level at bottom of probe . 443.4
Level lag in probe, in. . 0.4
Actual propellant level statlon in tank 443.8
Total volumeP below station 443.8, cu ft . . 14.9

Magss remaining at probe uncovery

(69.5 1b/cu ft X 14.9 cu ££)¢, 1b . . . . . . . + + . . . .. . . 1035
102 burned from probed uncovery to MECO, 1b
C-1 engine:

29.2 1b/sec FOr 4.6 SEC « « « v « v v v o o v e e w e e e . . . . 1343

31.3 1b/sec for 8.0 sec . . . C e e e e e e e e e e e e . . 250.4
Total ILO2 burned by C-1 engine, lb e e e e e e 4 s e 4 e e e e < . 3BB4.7
C-2 engine:

29.2 lb/sec FOr 7.2 S€C « « « « o v o v v e e e e e e . e .. 210.2

31.3 1b/sec for 5.4 sec . . o 11 IO
Total IO, burned by C-2 engine, lb e e e e e+« 4 -« . . 379.2
Total IO, consumed from probe uncovery to MECO lb

384.7 + 379.2 . . . e e e e s s e e s e e e e s e s e s e s . . 163.9
Total IOy residual®, ib

1035 1b - 763.9 1b Sy
Usable 10, residualf, 1b

271.1 1b - 68 1b O . T

Liquid hydrogen:

Station level at bottom of probe S Y %)
Level lag® in probe, in. . . e e e e e e e e e e e e 0.2
Actual propellant level statlon in tank e Y A
Total volumeP below station 372. 7, caft. . . ... .. .. ... B2.3
Mass remaining at probe uncovery

(4.29 1b/cu £t X 62.3 cu F£)S, 1b . + v v v v v v v o o . . . . . 287.3

LH2 burned from probed uncovery to MECO, 1lb
C-1 engine:

5.58 1b/S€C FOr 2.4 SEC + « + « + = « + 4 4 o 4 v w0 e w0 .. 1304

5.43 1b/sec for 8.0 sec . . . B
Total LH2 burned by C-1 engine, lb e e e e e 4 s s s e 4 4 s . . bB.9
C-2 engine:

5.57 1b/SeC FOr 5 SE€C « + = « ¢ « o ¢ o o v 0 e v e e e e w e .. 279

5.43 1b/sec for 5.4 sec . . . C e e e e e e e e e e e e e .. 29.3
Total LHo burned by C-2 engine, lb Y Y
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SEMNSENn.

Total LH2 consumed from probe uncovery to MECO, 1b

56.9 1b +57.21b . . . . . - . O K0 : 3 &
Total IH, residual®, 1b

267.3 1D = 104.1 1b v v o v 4 4 4 4 s e e e e e e e e e e e e . . 163.2
Usable residualf, 1b

163.2 1b = TLeB Ib ¢ o v ¢ v v 4 e e e e e e e e e s e e e e e 9l.4

®The level lag is the difference in level inside the PU probe (level sensed)
and the level outside the probe (actual level in tank).

Pyolumes include 2.01 cu ft L0 and 3.47 cu £t ILHs for lines, pumps, etc.

CDensities obtained from curves for vapor pressure against density from
ref. 10.

dFlow rates based on PU valve positions.

€Accuracy of residuals is #10 percent as a result of uncertainties in density,
probe location, and volume.

fA total of 68 1b of 102 represents the LO2 remaining in the boost-pump sump
when zero NPSH point is reached; 71.8 1b of IH2 represents the LHo remain-

ing in tank and sump when the boost pump will cause vapor pull-through in

the liquid (ref. 18).
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APPENDIX C

SYMBOLS AND DETAILED LISTING OF TRAJECTORY RECONSTRUCTION FOR AC-6 FLIGHT

TIME
WEIGHT
TOTAL FLOW

GRND RANGE

THETA T

Q¥ALPHA TOT
ALTTTUDE
RADIUS

VEL E

VEL R

VEL T

ALT

ALPHA

BETA

PSI

PSIDOT

CROSS RANGE

DOWN RANGE

DESCRIPTTIONS
Standard Output (OP 1)
elapsed time from lift-off
total weight of wvehicle
total weight flow

ground-range great-circle distance (spherical earth, Ry = 3441.3
n. mi.) from launch pad to vehicle subpoint

inertial range angle, measured between launch radius vector and
present radius vector

product of dynamic pressure and total angle of attack
altitude above oblate spheroidal earth, ft

magnitude of radius vector from Earth center to vehicle
magnitude of velocity with respect to Earth

magnitude of velocity with respect to air

magnitude of velocity in inertial system

altitude above oblate spheroidal earth, n. mi.

angle of attack in pitch (XI, ZETA) plane, positive for ship
above relative velocity vector, VR

angle of .attack in yaw (XI, ETA) plane, positive for ship left of
relative velocity vector, Vg

inertial attitude angle, measure of angle between ship longitu-
dinal axis and inertial u,v plane, positive above plane

time rate of change of PSI

minimum ground distance from vehicle subpoint to plane formed by
launch vertical vector and launch down-range vector

distance from vehicle subpoint to launch site along Great Circle
at 94.539° azimuth through lsunch site



GEOCENT LAT
LONGITUDE

A7T E

AZT R

AZL I

PHI

THRUST FIXED

THRUST CONTL

GAMMA E

GAMMA R

GAMMA I

EAST WIND

AXT, FORCE

SIDE FORCE

NORM FORCE

AXD, ID FCTR

WIND VEL

NORTH WIND

A™ PRESS

DYNM PRESS

HEAT PARAM

MACH NUMBER

RHO-VR CUBED

192

geocentric latitude, degrees north of equator

degrees from Greenwich, positive east

azimuth of VEL E, angle between projection of VEL E into azimuth
plane (plane perpendicular to radius vector) and north direc-
tion, positive clockwise from north

azimuth of VEL R

azimuth of VEL I

inertial attitude angle - angle between projection of minus ZETA
axis in u,v plane and the u-axis

fixed thrust magnitude - nongimbaled engines thrust
controlled thrust magnitude - gimbaled engines

flight path angle of VEL E, measured angle between velocity vec-
tor and local horizontal, positive above horizontal

flight path angle of VEL R
flight path angle of VEL I
magnitude of wind velocity component from east

net aerodynamic force and holddown force along longitudinal
axis, XT

aerodynamic force along side axis, ETA
aerodynamic force normal to vehicle along ZETA
instantaneous value of (thrust - drag)/weight
magnitude of wind velocity

magnitude of wind velocity component from north

atmospheric (ambient) pressure

s 2
dynamic pressure, % PaVy

heating parameter; time integral from lift-off of product of
time, DYNM PRESS, and VEL R

Mach number, ratio of VEL R and local speed of sound

product of air density and VEL R cubed




TOTAL ISP

THRUST ( )

THRUST TOT
THRUST CORR (B)
THRUST CORR (S)
PC (B)

FUEL FLOW ( )

FUEL FLOW TOT

F FLOW CORR (B)
F FLOW CORR (S)
PC (8)

OXID FLOW ( )

OXID FLOW TOT
O FLOW CORR (B)
O FLOW CORR (8)
PC (V)

FP INLTP ( )
FUEL DENSITY
OXID DENSITY
MIX RATIO (B)
MIX RATIO (S)
BASE FORCE

OP INLTP ( )

oy

instantaneous quotient of total axial thrust by total flow

Detailed Propulsion (DEPRO)

total thrust of booster (B), sustainer (S), or vernier (V)
engines, respectively, (vernier gimbaled)

total thrust of all engines
change in booster thrust from C star table
change in sustainer thrust from C star and PU tables

effective chamber pressure of booster engines

total fuel flow rate of booster (B), sustainer (S), or
vernier (V) engines, respectively; vernier flow included
in sustainer

total fuel flow rate for all engines

change in booster fuel flow rate from C star table
change in sustainer fuel flow rate from C star and PU table
effective chamber pressure of sustainer engine

total LOo flow rate of booster (B), sustainer (S), or vernier
(V) engines, respectively; vernier flow included in sustainer

total L0, flow rate for all engines

change in booster IO, flow rate from C star table

change in sustainer LO, flow rate from C star and PU tables
effective chamber pressure of vernier engines

fuel pump inlet pressure, booster (B) or sustainer (S)

fuel density

L0, density based on telemetry measurements

ratio of 1LOs to fuel (booster)

ratio of 10p to fuel (sustainer)

force of interaction of jet exhaust and base configuration

L0z pump inlet pressure, booster (B) or sustainer (S)
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FUEL WEIGHT
OXID WEIGHT

AYT, LD FCTR

CAP RATIO (PU)

HOLD - DOWN

OIL WEIGHT ( )

FUEL LEVEL
OXID LEVEL
NPSH

VALVE ANGLE (PU)

ATM PRESS
VAPOR PRESS
FUEL TNK PR (G)
OXID T PR (G)

ACS ITER

THRUST XI
ETA
ZETA

DEL XT-ETA
DEL XI-ZETA

CG XI

CG ETA

194

weight of fuel above sustainer pump inlet

weight of 102 above sustainer pump inlet

axial load factor, required by propulsion model to calculate
effect of headrise on pump inlet conditions

capacitance output from fuel manometer divided by capaci-
tance output from oxidizer manometer; this ratio is calcu-
lated from telemetry values of PU valve angle position

restraining force on vehicle during first 10 sec

weight of lubrication oil remaining, booster (B) or sus-
tainer (S)

height of fuel above sustainer pump inlet
height of LO2 above sustainer pump inlet
net positive suction head of sustainer IOs pump

propellant utilization fuel valve angle, value used is from
telemetry

atmosphere (ambient) pressure

vapor pressure of LO2

gage pressure of fuel tank (telemetry)
gage pressure of LOo tank (telemetry)
internal counter

Vehicle Dynamic Parameters (OP 5)

thrust components in vehicle axes system

thrust deflection angle in XI-ETA plane to compensate for
center-of-gravity offset and aerodynamic moments

thrust deflection angle in XI-ZETA plane to compensate for
center-of-gravity offset and aerodynamic moments

center of gravity measured from zero station along longi-
tudinal (XI) axis

center of gravity measured from longitudinal axis along
pitch (ETA) axis

il




CG ZETA
CP NORM
CP SIDE

AFERO MOM XI
ETA
ZETA
INERTIA XT
ETA
ZETA
INERTIA XI-ETA

ETA-ZETA
XI-ZETA

THRUST

LH2 FLOW

LOZ2 FLOW
RATIO

C-1 THRUST
C-1 LH2 FLOW
C-1 LO2 FLOW
C-1 RATIO

PERCENT T1

C-2 THRUST
C-2 LHZ FILOW
C-2 LO2 FLOW

C-2 RATIO

oy -

center of gravity measured from longitudinal axis along yaw
(ZETA) axis

center of pressure measured from zero station for forces
perpendicular to pitch (XI-ETA) plane

center of pressure measured from zero station for forces
perpendicular to yaw (XI-ZETA) plane

aerodynamic moments about center of gravity in vehicle axes

system

moments of inertia in vehicle axes system

products of inertia in vehicle axes system

Centaur
total Centaur thrust
total IHz flow
total 10s flow
ratio of IO, to LH,, total
thrust of C-1 engine
LH2 flow for C-1 engine
LO2 flow for C-1 engine
ratio of 10, to LHp for C-1 engine

percent change in thrust due to inlet pressures, temperatures,
and PU valve setting for C-1 engine

thrust of C-2 engine
IHo flow for C-2 engine
10, flow for C-2 engine

ratio of LOp to LHp for C-2 engine
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PERCENT T2

LH2 WEIGHY
LO2 WEIGHT
C-1 LH2 PRESS
C-2 LH2 PRESS

PERCENT ISPl

C-1 ISP

C-1 FLOW
C-1 102 PRESS
C-2 102 PRESS

PERCENT ISP2

C-2 ISP

C-2 FLOW
C-1 1H2 TEMP
C-2 LH2 TEMP

PERCENT MR1

C-1 PU VALVE
C-2 PU VALVE
C-1 102 TEMP
C-2 102 TEMP

PERCENT MR2

196
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percent change in thrust due to inlet pressures, temperatures,
and PU valve setting for C-2 engine

weight of LHo
weight of 102
pump inlet pressure for C-1 engine LHs (telemetry)
pump inlet pressure for C-2 engine IH, (telemetry)

percent change in engine specific impulse due to inlet condi-
tions and valve setting for C-1 engine

specific impulse of C-1 engine equals ratio of C-1 thrust to
C-1 fiow

total propellant flow for C-1 engine
pump inlet pressure for C-1 engine LO, (telemetry)
pump inlet pressure for C-2 engine IO, (telemetry)

percent change in engine specific impulse due to inlet condi-
tions and valve setting for C-2 engine

specific impulse of C-2 engine equals ratio of C-2 thrust to
C-2 flow

total propellant flow for C-2 engine
pump inlet temperature for C-1 engine LH2 (telemetry)
pump inlet temperature for C-2 engine ILH, (telemetry)

percent change in propellant mixture ratio due to engine inlet
conditions and PU valve setting for C-1 engine

propellant utilization valve setting for C-1 engine (telemetry)
propellant utilization valve setting for C-2 engine (telemetry)
pump inlet temperature for C-1 engine LOp (telemetry)
pump inlet temperature for C-2 engine LO2 (telemetry)

Percent change in propellant mixture ratio due to engine inlet
conditions and PU valve setting for C-2 engine
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PERIGEE RAD
APOGEE RAD

PERIGEE ALT

APOGEE ALT

PERIGEE VEL
APOGEE VEL
SEMI LAT REC
PERIOD

SEMI MAJ AXIS
ENERGY
ECCENTRICITY
INCLINATION
IRUE ANOMALY

ASCEND NODE

SlhibiShils

Orbit Elements (OP 4)
radius at perigee of instantaneous conic
radius at apogee of instantaneous conic

perigee altitude (above spherical Earth with radius = 3443.9
n. mi.

apogee altitude (above spherical Earth with radius = 3443.9
n. mi.)

velocity at perigee

velocity at apogee

semilatus rectum of trajectory
period of eliptical trajectory
semimajor axis

energy, v2/2 - u/r

orbit eccentricity

orbit inclination

true anomaly

ascending node
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NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of
importance as a contribution to existing knowledge.
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TECHNICAL MEMORANDUMS: Information receiving limired disirnbu-

tion because of prelirﬁinary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection
with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign
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Utilization Reports and Notes; and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DiViSiON
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
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